ICGRC Omics API Demo (using batch offline data)¶
About this notebook Semi-offline mode using pre-downloaded large datasets like whole-genome SNPs and gene annotatons, and whole-transcriptome expression data
This Jupyter notebook demonstrates the utility of the ICGRC Omics API (https://icgrc.info/api_doc) to serve multi-omics datasets from a Tripal database. The API is designed for merging multi-omics datasets, and from multiple data sources. The use-cases here include:
- Merging phenotype data from multiple sources, transforming them into compatiple units, and plotting their distribution
- Batch effect correction and imputation
- Weighted Gene Co-expression Network Analysis (WGCNA) to list top Trait-Gene pairs using Phenotype and Expression data
- Matrix eQTL to list top SNP-Gene pairs using Variant and Expression data
- mGWAS to list top SNP-Metabolite pairs using Variant and Phenotype data
- Combine results of eQTL, WGCNA and mGWAS to find shared genes and traits to trace multiple evidence paths.
- Semi-offline mode using pre-downloaded large datasets like whole-genome SNPs and gene annotatons, and whole-transcriptome expression data
This demo uses the omics_api library designed to interface with the ICGRC omics API web service. These python libraries are use in all applications: matplotlib,numpy, wand. Additional software need to be installed by the client like plink, R and and python packages used by specific use-cases described in the sections below.
Goal oriented notebooks
This notebook is a short demo more focused on the API features, the results presented may not be statistically robust. The following notebooks are goal-oriented examples with actual/reliable results.
- Analyses using single dataset for each tool run
- Comparision of different imputation and batch correction tools
%matplotlib inline
%load_ext autoreload
import os
import requests
from IPython.display import display, Image, FileLink
#from jupyter_datatables import init_datatables_mode
#from ipydatagrid import DataGrid
from itables import init_notebook_mode
init_notebook_mode(all_interactive=True)
#init_notebook_mode(connected=True)
import itables.options as itablesopt
# display table options
#itablesopt.lengthMenu = [2, 5, 10, 20, 50, 100, 200, 500]
#itablesopt.maxBytes = 10000 , 0 to disable
#itablesopt.maxRows
#itablesopt.maxColumns
#%load_ext jupyter_require
#%requirejs d3 https://d3js.org/d3.v5.min
#init_datatables_mode()
%autoreload 2
import omics_api
from omics_api import *
# Flags to emable example
others=True
PLOT_PHEN=False
WGCNA=others
GWAS=others
MATRIXEQT=others
VERBOSE=True
MERGE=others
REQUERY_URL=False
CHECK_BE=False # check and correct batch effect
# imputation strategy from https://doi.org/10.1038/s41598-023-30084-2
IMPUTE_M1=False # global mean
IMPUTE_M2=False # batch mean
DEBUGGNG=False
# strict setting
#maxp=1e-5
# threshold settings
maxpgwas=1e-20
maxpeqtl=1e-5
maxpwgcna=1e-5
mincorwgcna=0.7
cortopnwgcna=None
gstopnwgcna=None
top_dfgwas=[]
top_dfwgcna=[]
top_dfeqtl=[]
myunit='percent_of_dw'
#SHOW_ALL
#SHOW_DEBUG
#SHOW_ERRORONLY
if DEBUGGNG:
setVariables(loglevel=getSetting('SHOW_DEBUG'),keep_unit=myunit)
else:
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
#setVariables(loglevel=getSetting('SHOW_ERRORONLY'))
"set variables: \nkeep_unit=percent_of_dw\nr_path=Rscript\nplink_path=plink\nLOG_LEVEL=1\nunit_converter={('percent_of_dw', 'ug_per_gdw'): 10000.0, ('ug_per_gdw', 'percent_of_dw'): 0.0001}"
Multiple data sources¶
This demo plots dstribution of datasets from multiple sources
Avalable options for phenotypes
data = requests.get('https://icgrc.info/api/user/phenotype/dataset').json()
print('Phenotype datasets(phends) options')
display_table(data,columns=['phen_dataset','unit_name','samples_count','trait_count'])
Phenotype datasets(phends) options ['phen_dataset', 'unit_name', 'samples_count', 'trait_count']
phen_dataset | unit_name | samples_count | trait_count |
---|---|---|---|
Loading... (need help?) |
#api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020&byacc=1&hassnp=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Zager2019&private=1&byacc=1&hassnp=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=GloerfeltTarp2023&private=1&byacc=1&hassnp=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019,GloerfeltTarp2023&private=1&byacc=1&hassnp=1&with_stdunits=1"]
#api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Zager2019&private=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=GloerfeltTarp2023&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019,GloerfeltTarp2023&with_stdunits=1"]
#label_url=['Booth2020','Zager2019','GloerfeltTarp2023','BGZphenotypes']
api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Zager2019&private=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019&with_stdunits=1"]
label_url=['Booth2020','Zager2019','BZphenotypes']
label2color=dict()
label2color['Azman2023']='red'
label2color['Booth2020']='blue'
label2color['GloerfeltTarp2023']='green'
label2color['Zager2019']='orange'
label2color['BZphenotypes']='yellow'
keep_unit='percent_of_dw'
#keep_unit='ug_per_gdw'
n_bins=10
icnt=0
dfs=[]
dfs_imputed_m2=[]
phenall=set()
keep_samples=set()
keep_phenotypes=set()
if PLOT_PHEN:
for iurl in api_url:
print(label_url[icnt])
df_raw= read_url(iurl, label_url[icnt],requery=REQUERY_URL)
if VERBOSE and icnt==0:
display('in original units')
display(drop_allnazero_rowcol(df_raw.loc[df_raw['datatype'].str.startswith('3 PHEN')]))
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit='percent_of_dw')
phenall.update(set(get_phenotypes(c_converted_phenunits_values)))
plot_histograms(c_converted_phenunits_values, 'changed_to_' + keep_unit, label_url[icnt]) #,label2color=label2color)
if VERBOSE and icnt==0:
display('coverted to ' + keep_unit)
display(drop_allnazero_rowcol(c_converted_phenunits.loc[c_converted_phenunits['datatype'].str.startswith('3 PHEN')]))
display('coverted to (values only) ' + keep_unit)
display(drop_allnazero_rowcol(c_converted_phenunits_values.loc[c_converted_phenunits_values['datatype'].str.startswith('3 PHEN')]))
dfs.append(c_converted_phenunits_values)
if IMPUTE_M2:
(df_corrected,dummy)=check_batcheffects(c_converted_phenunits_values, label_url[icnt], TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=False) #properties=['phenotype_dataset']) #properties=['NCBI BioProject'])
dfs_imputed_m2.append(df_corrected)
icnt+=1
if PLOT_PHEN:
phenminmaxbin=None
plot_histograms_multi(dfs, keep_unit,label_url,phenminmaxbin,label2color=label2color,nbins=n_bins,heatmap=True)
The imputation and batch correction strategies described in (Hui 2023, https://doi.org/10.1038/s41598-023-30084-2) are used here. Briefly, M1 uses global mean imputation, M2 uses batch mean imputation, and M3 uses cross-batch mean imputation. They found M2 gave the best performance. M1 and M2 strategies are tried here.
Plot original data after unit conversion data, and data imputed by batch
if PLOT_PHEN and IMPUTE_M2:
phenminmaxbin=None
df_orgcor=dfs + dfs_imputed_m2
label_orgcor=[]
for label in label_url:
label_orgcor.append(label)
for label in label_url:
label_orgcor.append('m2_' + label)
label2color['m2_Booth2020']='cyan'
label2color['m2_Zager2019']='magenta'
label2color['m2_BZphenotypes']='gray'
plot_histograms_multi(df_orgcor, keep_unit,label_orgcor,phenminmaxbin,label2color=label2color,nbins=n_bins)
Check batch effect, imputation and batch effect correction¶
Check for batch effects using Principal Component Analysis, and correction by ComBat or EmpericalBayesLM. PCA and ComBat require imputation accomplished by scikit-learn SimpleImputer (most_frequent, mean, median) and KNNImputer. Another option is Probabilistic PCA, PPCA, can compute PCA with missing values, and returns imputed data at the same time.
The available options are:
on_missing [mean,median,most_frequent,KNNImputer,ppca]
be_method [rcombat, eblm]
These tools are typically used on high throughput datasets like transcriptomic expression, proteomics or metabolomics with hundreds to thousands of data points. Here we use it on published, low-throughput metabolite concentration datasets.
Required python modules
- scikit-learn
- pyppca
- plotly
Required R packages
- sva
- WGCNA
M1 imputation (global mean)
if CHECK_BE and IMPUTE_M1:
#api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019,GloerfeltTarp2023&with_stdunits=1"]
#label_url=['BGZphenotypes']
api_url_m1 = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019&with_stdunits=1"]
label_url_m1=['BZphenotypes']
icnt=0
df_raw= read_url(api_url_m1[0], label_url_m1[0],requery=REQUERY_URL)
(c_converted_phenunits, dfphen)=convert_units_to(df_raw,to_unit='percent_of_dw')
(df_corrected, map_corrected_bybatch)=check_batcheffects(dfphen, label_url_m1[0], TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=True) #properties=['phenotype_dataset']) #properties=['NCBI BioProject'])
#print(list(map_corrected_bybatch.keys()))
#plot_histograms_multi(list(map_corrected_bybatch.keys()), keep_unit,list(map_corrected_bybatch.values()),phenminmaxbin,label2color=label2color,nbins=n_bins)
M2 imputation (batch mean)
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
if CHECK_BE and IMPUTE_M2:
dfs_imputed_m2_bz=pd.merge(dfs_imputed_m2[0],dfs_imputed_m2[1], left_on=['datatype','property'], right_on=['datatype','property'], how = 'outer')
(df_corrected_rcb, map_corrected_bybatch_rcb)=check_batcheffects(dfs_imputed_m2_bz, 'm2rcb_BZphenotypes', TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=True,be_method='rcombat') #properties=['phenotype_dataset'])
(df_corrected_eblm, map_corrected_bybatch_eblm)=check_batcheffects(dfs_imputed_m2_bz, 'm2eblm_BZphenotypes', TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=True,be_method='eblm') #properties=['phenotype_dataset'])
"set variables: \nkeep_unit=percent_of_dw\nr_path=Rscript\nplink_path=plink\nLOG_LEVEL=1\nunit_converter={('percent_of_dw', 'ug_per_gdw'): 10000.0, ('ug_per_gdw', 'percent_of_dw'): 0.0001}"
Plot and compare the batch imputed, ComBat corrected and EmpericalBayesLM corrected data
if PLOT_PHEN and IMPUTE_M2:
phenminmaxbin=None
'''
df_orgcor=dfs.copy() #+ dfs_imputed_m2
label_orgcor=label_url.copy() # []
'''
label_orgcor=[]
df_orgcor=dfs_imputed_m2.copy()
for label in label_url:
label_orgcor.append('m2_' + label)
display(label_orgcor)
if True:
for batch in list(map_corrected_bybatch_rcb.keys()):
label_orgcor.append('m2rcb_' + batch)
df_orgcor.append(map_corrected_bybatch_rcb[batch])
label_orgcor.append('m2rcb_BZphenotypes')
df_orgcor.append(df_corrected_rcb)
if True:
for batch in list(map_corrected_bybatch_eblm.keys()):
label_orgcor.append('m2eblm_' + batch)
df_orgcor.append(map_corrected_bybatch_eblm[batch])
label_orgcor.append('m2eblm_BZphenotypes')
df_orgcor.append(df_corrected_eblm)
display(label_orgcor)
label2color['m2_Booth2020']='cyan'
label2color['m2_Zager2019']='magenta'
label2color['m2_BZphenotypes']='gray'
label2color['m2rcb_Booth2020']='darkblue'
label2color['m2rcb_Zager2019']='pink'
label2color['m2rcb_BZphenotypes']='brown'
label2color['m2eblm_Booth2020']='lightgreen'
label2color['m2eblm_Zager2019']='darkviolet'
label2color['m2eblm_BZphenotypes']='lightsalmon'
plot_histograms_multi(df_orgcor, keep_unit,label_orgcor,phenminmaxbin,label2color=label2color,nbins=n_bins)
WGCNA Analysis¶
This demo uses expression and phenotype data for Weighted Gene Co-expression Network Analysis (WGCNA), using the WGCNA R package (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA). The output is the correlation of Gene Modules to Traits, were modules are a set of genes with similar expresson patterns. The top trait-module pairs are returned with the set number or p-value cutoff.
Requirements
- R
- R packages: WGCNA
Avalable options for expression
data = requests.get('https://icgrc.info/api/user/expression/dataset').json()
print('Expression datasets (expds) options')
#print(pd.DataFrame(data,columns=['expds','analysis_name']).to_string(index=False))
#display(pd.DataFrame(data,columns=['expds','analysis_name']))
display_table(data,columns=['expds','analysis_name'])
data = requests.get('https://icgrc.info/api/user/expression/transet').json()
print('Transcriptome set (transet) options')
display_table(data,columns=['transet'])
import datetime
DATADIR='data'
EXPFILE=DATADIR + '/21trichcs10_allexp.tsv'
# download if not available
#pd.read_csv('https://icgrc.info/api/user/expression/list?expds=21trichcs10',sep="\t").to_csv(EXPFILE,sep="\t",index=False)
phends=['Zager2019','Booth2020']
expds='21trichcs10'
transet='cs10'
label_wgcna=[]
url_wgcna=[]
for i in range(len(phends)):
label_wgcna.append('wgcna_21trichcs10allexp_cs10_' + phends[i])
url_wgcna.append('https://icgrc.info/api/user/phenotype/list?phends=' + phends[i] + '&with_stdunits=1&tablelimit=100000&limit=100000')
icnt=0
top_dfwgcna=[]
if WGCNA :
print('STARTED WGCNA ' + str(datetime.datetime.now()))
for iurl in url_wgcna:
ilabel=label_wgcna[icnt]
df_raw= read_url(iurl, ilabel,requery=False)
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
moduletrait=[]
topmodules=do_wgcna_prepare(c_converted_phenunits_values,dflabel=ilabel,cortopn=cortopnwgcna,maxp=maxpwgcna,mincor=mincorwgcna,recalc=False,exp_file=EXPFILE)
for itop in topmodules:
moduletrait.append(itop[0]+","+itop[1])
dfwgcn=do_wgcna_modulesgenes(c_converted_phenunits_values,dflabel=ilabel,moduletrait=moduletrait,maxp=maxpwgcna,gstopn=gstopnwgcna,mings=mincorwgcna)
top_dfwgcna.append(dfwgcn)
icnt+=1
STARTED WGCNA 2023-11-23 22:42:36.324218
'Rscript Langfelder-03a-relateModsToExt.R wgcna_21trichcs10allexp_cs10_Zager2019 > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor dev.new(): using pdf(file="Rplots1.pdf") Warning message: In greenWhiteRed(50) : WGCNA::greenWhiteRed: this palette is not suitable for people with green-red color blindness (the most common kind of color blindness). Consider using the function blueWhiteRed instead.
top expressed gene-trait wgcna_21trichcs10allexp_cs10_Zager2019.wgcna.top.tsv
expgenes | trait | GS | p.GS |
---|---|---|---|
Loading... (need help?) |
'Rscript Langfelder-03a-relateModsToExt.R wgcna_21trichcs10allexp_cs10_Booth2020 > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor dev.new(): using pdf(file="Rplots1.pdf") Warning message: In greenWhiteRed(50) : WGCNA::greenWhiteRed: this palette is not suitable for people with green-red color blindness (the most common kind of color blindness). Consider using the function blueWhiteRed instead.
top expressed gene-trait wgcna_21trichcs10allexp_cs10_Booth2020.wgcna.top.tsv
expgenes | trait | GS | p.GS |
---|---|---|---|
Loading... (need help?) |
eQTL analysis¶
This demo uses expression and variant data for eQTL analysis using Matrix eQTL R package (https://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/runit.html). The analysis can be between any SNP-gene pair, neighboring pairs (cis), or distant pairs (trans). The output are the top SNP-Gene pairs the set number or p-value cutoff.
Requirements
- R
- R packages: MatrixEQTL
Avalaible options for variants
data = requests.get('https://icgrc.info/api/user/variant/dataset').json()
print('Variant reference (ref) and dataset (snpds) options')
display_table(data,columns=['ref','snpds'])
Variant reference (ref) and dataset (snpds) options ['ref', 'snpds']
ref | snpds |
---|---|
Loading... (need help?) |
Select options
PLINKFILE=DATADIR + '/cs10-21trichomes-all-gatkgenotype-allsnps-samn-plink-nofam'
GENEFILE=DATADIR+'/gene_cs10.tsv'
#pd.read_csv('https://icgrc.info/api/user/gene/list?annot=cs10',sep="\t").to_csv(GENEFILE,sep="\t",index=False)
# GENELOCFILE is derived from GENEFILE using only gene_id\tcontig\tfmin\tfmax
GENELOCFILE=DATADIR+'/cs10xm_exp.genesloc.tsv'
icnt=0
top_dfeqtl=[]
top_dfeqtltrans=[]
top_dfeqtlcis=[]
if MATRIXEQT:
print('STARTED EQTL ' + str(datetime.datetime.now()))
(dfeqtlall,dfeqtlcis,dfeqtltrans)=do_matrixeqtl(None,'21trichcs10_allexp_allsnps',annot=None, recodeplink=False,maxp=maxpeqtl,plink_file=PLINKFILE,expgeneloc_file=GENELOCFILE,exp_file=EXPFILE)
top_dfeqtl.append(dfeqtlall)
top_dfeqtlcis.append(dfeqtlcis)
top_dfeqtltrans.append(dfeqtltrans)
STARTED EQTL 2023-11-23 22:42:53.747486
top snp-expressed cis gene
snps | gene | statistic | pvalue | FDR | beta |
---|---|---|---|---|---|
Loading... (need help?) |
top snp-expressed trans gene
snps | gene | statistic | pvalue | FDR | beta |
---|---|---|---|---|---|
Loading... (need help?) |
top snp-expressed all gene 21trichcs10_allexp_allsnps.eqtl.all.top.tsv
snps | gene | statistic | pvalue | FDR | beta |
---|---|---|---|---|---|
Loading... (need help?) |
Metabolite SNP Association (semi-mGWAS)¶
This demonstration uses traits/metabolite associaton with SNPs using plink --assoc feature. This generates the Manhattan Plot for each trait on the genomic location of genes that satify the functional annotation or accession constraints. The result is the list of top SNP-Trait pairs according to the set number or p-value cutoff.
Requirements
- R
- Python package: qqman
- plink
if GWAS:
snpds='21trichs'
phends=['Zager2019','Booth2020']
geneslabel='all'
ref='cs10'
label_gwas=[]
url_gwas=[]
for i in range(len(phends)):
label_gwas.append('gwas_21trich_allsnps_cs10_' + phends[i] + '_' + geneslabel)
url_gwas.append("https://icgrc.info/api/user/phenotype/list?ref=" + ref + "&snpds=" + snpds + "&tablelimit=10000000000&limit=2000000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000&phends=" + phends[i] + "&with_stdunits=1")
phenall=set()
icnt=0
df_gwas=[]
# collect available phenotypes then make selection
if GWAS:
print('STARTED GWAS ' + str(datetime.datetime.now()))
for iurl in url_gwas:
ilabel=label_gwas[icnt]
df_raw= read_url(iurl, ilabel,requery=False)
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
df_gwas.append(c_converted_phenunits_values)
phenall.update(set(get_phenotypes(c_converted_phenunits_values)))
# select all traits
selectionid=list(range(1,len(phenall)+1))
selection=select_options(phenall, waitInput=False, selected=selectionid)
STARTED GWAS 2023-11-23 22:43:11.586554
'[25] nerolidol\t\t[26] plus-terpinene\t\t[27] terpinolene'
"pre-selected ['1,8-cineole', 'Delta9-tetrahydrocannabinol', 'Delta9-tetrahydrocannabinolic acid', 'Total_cannabinoids', 'Total_monoterpenes', 'Total_sesquiterpenes', 'Total_terpenoids', 'alpha-humulene', 'alpha-pinene', 'beta-caryophyllene', 'beta-myrcene', 'beta-ocimene', 'beta-pinene', 'borneol', 'camphene', 'camphor', 'cannabichromene', 'cannabidiol', 'cannabidiolic acid', 'cannabigerol', 'cannabinol', 'gamma-3-carene', 'limonene', 'linalool', 'nerolidol', 'plus-terpinene', 'terpinolene']"
top_dfgwas=[]
if GWAS:
idf=0
for df in df_gwas:
dfgwas=do_gwas(df, label_gwas[idf],myunit,phenotypes=selection,rerunplink=False,maxp=maxpgwas,plink_file=PLINKFILE, plotgwasi=False ) #,assocmethod='linear')
top_dfgwas.append(dfgwas)
idf+=1
common samples of 3 PHEN with data/cs10-21trichomes-all-gatkgenotype-allsnps-samn-plink-nofam = 27 {'SAMN10330900', 'SAMN10330922', 'SAMN10330912', 'SAMN10330913', 'SAMN10330921', 'SAMN10330905', 'SAMN10330918', 'SAMN10330899', 'SAMN10330901', 'SAMN10330919', 'SAMN10330920', 'SAMN10330908', 'SAMN10330897', 'SAMN10330898', 'SAMN10330910', 'SAMN10330906', 'SAMN10330909', 'SAMN10330904', 'SAMN10330914', 'SAMN10330917', 'SAMN10330907', 'SAMN10330902', 'SAMN10330915', 'SAMN10330916', 'SAMN10330903', 'SAMN10330911', 'SAMN10330896'}
rm: cannot remove ‘*.qassoc.done’: No such file or directory
top snp-trait gwas_21trich_allsnps_cs10_Zager2019_all.gwas.top.tsv
trait | CHR | snps | BP | NMISS | BETA | SE | R2 | T | pvalue |
---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
common samples of 3 PHEN with data/cs10-21trichomes-all-gatkgenotype-allsnps-samn-plink-nofam = 27 {'SAMN10330900', 'SAMN10330922', 'SAMN10330912', 'SAMN10330913', 'SAMN10330921', 'SAMN10330905', 'SAMN10330918', 'SAMN10330899', 'SAMN10330901', 'SAMN10330919', 'SAMN10330920', 'SAMN10330908', 'SAMN10330897', 'SAMN10330898', 'SAMN10330910', 'SAMN10330906', 'SAMN10330909', 'SAMN10330904', 'SAMN10330914', 'SAMN10330917', 'SAMN10330907', 'SAMN10330902', 'SAMN10330915', 'SAMN10330916', 'SAMN10330903', 'SAMN10330911', 'SAMN10330896'}
rm: cannot remove ‘*.qassoc.done’: No such file or directory
top snp-trait gwas_21trich_allsnps_cs10_Booth2020_all.gwas.top.tsv
trait | CHR | snps | BP | NMISS | BETA | SE | R2 | T | pvalue |
---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
Merge multi tools¶
Merge the result from the tools above to find multiple evedince of association. The steps include
- eQTL gives top snp-expression pairs, and snp gene-expressed gene pairs
- WGCNA gives top expressed gene - trait pairs
- mGWAS gives top snp-trait, and snp gene-trait pairs
The merging connects the expression genes common from the eQTL and WGCNA results, giving new snp gene-trait pairs
- The new snp gene-trait pairs are then intersected with the mGWAS result.
The intersecting pairs have two evidence paths of gene-gtrait association. The result below gives 144 gene-trait pairs, with 23 genes
#%autoreload 2
#import omics_api
#from omics_api import *
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
mergeoutfle='merged_21trichcs10_byds.tsv'
def printdflists(l):
for df in l:
print(df.columns.values.tolist())
#setVariables(loglevel=getSetting('SHOW_DEBUG'))
printdflists(top_dfeqtl)
printdflists(top_dfwgcna)
printdflists(top_dfgwas)
if MERGE:
df_genes=pd.read_csv(GENEFILE,sep="\t")
merge_matrixeqtl_wgcna_gwas(eqtls=top_dfeqtl, wgcnas=top_dfwgcna,gwass=top_dfgwas,outfile=mergeoutfle,use_snpgene=True,df_genes=df_genes,recalc=False)
"set variables: \nkeep_unit=percent_of_dw\nr_path=Rscript\nplink_path=plink\nLOG_LEVEL=1\nunit_converter={('percent_of_dw', 'ug_per_gdw'): 10000.0, ('ug_per_gdw', 'percent_of_dw'): 0.0001}"
['snps', 'gene', 'statistic', 'pvalue', 'FDR', 'beta'] ['expgenes', 'trait', 'GS', 'p.GS'] ['expgenes', 'trait', 'GS', 'p.GS'] ['trait', 'CHR', 'snps', 'BP', 'NMISS', 'BETA', 'SE', 'R2', 'T', 'pvalue'] ['trait', 'CHR', 'snps', 'BP', 'NMISS', 'BETA', 'SE', 'R2', 'T', 'pvalue']
'File df_eqtl_wgcna_onexpgenes_merged_21trichcs10_byds.tsv dont exists'
'loaded df_eqtl_wgcna_onexpgenes_merged_21trichcs10_byds.tsv'
eqtl_wgcna_onexpgene_merged_21trichcs10_byds.tsv ['expgenes', 'pvalue', 'snps', 'snpgenes', 'locus', 'note', 'goterm', 'iprterm', 'trait', 'GS', 'p.GS']
expgenes | pvalue | snps | snpgenes | locus | note | goterm | iprterm | trait | GS | p.GS |
---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
'skipping eqtl_gwas_onsnpgene_merged_21trichcs10_byds.tsv shape=(447041346, 15)'
/home/lmansu10/jupyter/omics_api_utils.py:3365: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance. df_eqtl_wgcna_onexpgenes_gwas_onsnpgenetrait=pd.merge(df_eqtl_wgcna_onexpgenes,df_gwass, on=['trait','snpgenes']) #.drop_duplicates()
"df_eqtl_wgcna_onexpgenes_gwas_onsnpgenetrait (74046, 9)\n[('trait', ''), ('snpgenes', ''), ('pvalue_eqtl', 'count'), ('pvalue_eqtl', 'min'), ('GS_wgcna', 'max'), ('pGS_wgcna', 'count'), ('pGS_wgcna', 'min'), ('pvalue_gwas', 'count'), ('pvalue_gwas', 'min')]"
'using unfiltered merged_21trichcs10_byds.tsv'
'generated merged_21trichcs10_byds.tsv'
triple_snpgenetrait_merged_21trichcs10_byds.tsv
trait | snpgenes | pvalue_eqtl_count | pvalue_eqtl_min | GS_wgcna_max | pGS_wgcna_count | pGS_wgcna_min | pvalue_gwas_count | pvalue_gwas_min | gene | contig | fmin | fmax | strand | locus | gb_keyword | go_term | interpro_value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
tgzdownloads('alltgz_21trich_allsnpallexp', txt=True, img=True)
'tar -cvzf alltgz_21trich_allsnpallexp.tgz -T dwlist.txt > /dev/null'
'generated alltgz_21trich_allsnpallexp.tgz'
Running semi-offline using large dataset¶
Performing genome-wide or transcriptome-wide analyses requires large datasets. It is not practical to use retail web-service API query but the datasets may be downloaded in bulk, stored, and accessed locally. The API has feature to use local file instead of constantly querying the web-server. Most of these files are still downloadable using the web-service but requested in bulk by datasets. These datasets include:
- gene files by reference and annotation from api/user/gene/list
- expression matrix by dataset from api/user/expression/list
- variant SNPs data in binary Plink format by dataset avaialable at
This section demonstrates bulk downloading the necessary datasets, and repeating the analyses described above using whole-genome SNPs and whole-transcriptome expression data. Since these runs take time, run this as a python script from the command line outside of jupyter.
#download gene annotation and save to data directory
datadir='data1'
GENEFILE=datadir+'/gene_cs10.tsv'
#pd.read_csv('https://icgrc.info/api/user/gene/list?annot=cs10',sep="\t").to_csv(GENEFILE,sep="\t",index=False)
#download expression matrix save to data directory
EXPFILE=datadir + '/21trichcs10_allexp.tsv'
#pd.read_csv('https://icgrc.info/api/user/expression/list?expds=21trichcs10',sep="\t").to_csv(EXPFILE,sep="\t",index=False)
#EXPFILE=datadir + '/GaoGuerrieroConneely_allexp.tsv'
#EXPFILE=datadir + '/Gao_allexp.tsv'
#pd.read_csv('https://icgrc.info/api/user/expression/list?transet=all&expds=Massimino2017&tablelimit=100000&limit=1000',sep="\t").to_csv(EXPFILE,sep="\t",index=False)
#download variant file in binary plink format at
PLINKFILE='data/cs10-21trichomes-all-gatkgenotype-allsnps-samn-plink-nofam'
#PLINKFILE=None
PHENFILE=datadir+'/phen_all.tsv'
#pd.read_csv('https://icgrc.info/api/user/phenotype/list',sep="\t").to_csv(PHENFILE,sep="\t",index=False)
if False:
import datetime
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
# hold top results
top_dfwgcna=[]
top_dfeqtl=[]
top_dfgwas=[]
# enable module
WGCNA=True
EQTL=True
GWAS=True
MERGE=True
REQUERY_URL=False
phends='Zager2019,Booth2020'
expds='21trichcs10'
transet='cs10'
label_url=None
label_wgcna=['wgcna_21trichcs10allexp_cs10_zagerbooth_b']
url_wgcna = ['https://icgrc.info/api/user/expression,phenotype/list?transet=' + transet + '&expds=' + expds + '&phends=' + phends + '&with_stdunits=0&tablelimit=100000&limit=100000']
icnt=0
if WGCNA :
print('STARTED WGCNA ' + str(datetime.datetime.now()))
for iurl in url_wgcna:
ilabel=label_wgcna[icnt]
df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
moduletrait=[]
topmodules=do_wgcna_prepare(c_converted_phenunits_values,dflabel=ilabel,cortopn=cortopnwgcna,maxp=maxpwgcna,mincor=mincorwgcna,recalc=False,exp_file=EXPFILE)
for itop in topmodules:
moduletrait.append(itop[0]+","+itop[1])
dfwgcn=do_wgcna_modulesgenes(c_converted_phenunits_values,dflabel=ilabel,moduletrait=moduletrait,maxp=maxpwgcna,gstopn=gstopnwgcna,mings=mincorwgcna)
top_dfwgcna.append(dfwgcn)
icnt+=1
snpds='21trichs'
phends='Zager2019,Booth2020'
querygenes="GO:0006721,GO:0008299,GO:0030639,terpene,isopentenyl,cannabid,cannabic,cannabiv,cannabin"
geneslabel='cannterp'
ref='cs10'
label_gwas=['gwas_21trich_allsnps_cs10_zagerbooth_cannterp_b']
url_gwas= ["https://icgrc.info/api/user/variant,phenotype/"+ querygenes + "?ref=" + ref + "&snpds=" + snpds + "&tablelimit=10000000000&limit=2000000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000&phends=" + phends + "&with_stdunits=1"]
phenall=set()
icnt=0
df_gwas=[]
# collect available phenotypes first to make selection
if GWAS:
print('STARTED GWAS ' + str(datetime.datetime.now()))
for iurl in url_gwas:
ilabel=label_gwas[icnt]
df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
df_gwas.append(c_converted_phenunits_values)
phenall.update(set(get_phenotypes(c_converted_phenunits_values)))
# show selection options, set to waitInput=True to get interactive response. For now selection selectionid is preselected
select_options(phenall, waitInput=False)
selectionid=[3,4,6,7,8,9,10,11,15,16,17,19,21,28,29,30,31,32,33,34,45,46,47,53,55] # most common cannabinoids/terpenes
#selectionid=[3,4,6,7], CBDA/THCA
if GWAS:
selection=select_options(phenall, waitInput=False, selected=selectionid)
# verify selections as as intended
print('selections: ' + str(selection))
idf=0
for df in df_gwas:
dfgwas=do_gwas(df, label_gwas[idf],myunit,phenotypes=selection,rerunplink=False,maxp=maxpgwas,plink_file=PLINKFILE) #,assocmethod='linear')
top_dfgwas.append(dfgwas)
idf+=1
ref="cs10"
snpds='21trichs'
expds='21trichcs10'
transet='cs10'
querygenes='cannabid,cannabic,cannabiv,cannabin,terpene'
url_eqtl = ["https://icgrc.info/api/user/expression,variant/" + querygenes + "?ref=" + ref + "&snpds=" + snpds + "&transet=" + transet + "&expds=" + expds + "&tablelimit=100000000&limit=100000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000"]
label_eqtl=["eqtl_terpcan_" + snpds + "_allsnpsexps_" + expds+'_relax_b']
# GENELOCFILE is derived from GENEFILE using only gene_id\tcontig\tfmin\tfmax
GENELOCFILE=datadir+'/cs10xm_exp.genesloc.tsv'
pd.read_csv(GENEFILE,sep="\t")[['name','contig','fmin','fmax']].rename(columns={'name':'geneid','contig':'chr','fmin':'s1','fmax':'s2'}).to_csv(GENELOCFILE,sep="\t",index=False)
icnt=0
if MATRIXEQT:
print('STARTED EQTL ' + str(datetime.datetime.now()))
for iurl in url_eqtl:
ilabel=label_eqtl[icnt]
df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
(dfeqtlall,dfeqtlcis,dfeqtltrans)=do_matrixeqtl(df_raw,ilabel,annot=None, recodeplink=False,maxp=maxpeqtl,plink_file=PLINKFILE,expgeneloc_file=GENELOCFILE,exp_file=EXPFILE)
top_dfeqtl.append(dfeqtlall)
icnt+=1
'''
top_dfeqtl=[]
top_dfgwas=[]
top_dfwgna=[]
top_dfeqtl.append('eqtl_terpcan_21trichs_allsnpsexps_21trichcs10_relax.eqtl.all.top.tsv')
top_dfwgcna.append('wgcna_21trichcs10allexp_cs10_zagerbooth_relax.wgcna.top.tsv')
top_dfgwas.append('gwas_21trich_allsnps_cs10_zagerbooth_cannterp_relax.gwas.top.tsv')
'''
merge_output='merged_21trichcs10allsnpsallexps_trait_relax_b.tsv'
if MERGE:
print('STARTED MERGE ' + str(datetime.datetime.now()))
df_gene=pd.read_csv(GENEFILE,sep="\t") #name contig fmin fmax strand gb_keyword go_term interpro_value)
merge_matrixeqtl_wgcna_gwas(eqtls=top_dfeqtl, wgcnas=top_dfwgcna,gwass=top_dfgwas,outfile=merge_output,use_snpgene=True,df_genes=df_gene)