ICGRC Omics API Demo (imputations and batch effect detection and correction)¶

About this notebook Merging datasets from different sources can introduce biases to give false signals in the analysis. Methods and tools are avaiable to detect these biases and correct the data to remove them. Although these methods work well with abundant datasets, we still implemented them here using our limited data to demonstrate the capability. We look forward to fully utilize these when more datasets are avaiable, or on other Tripal sites for heavily studied species with many datasets.

In [1]:
%matplotlib inline
%load_ext autoreload
   
import os
import requests
from IPython.display import display, Image, FileLink
#from jupyter_datatables import init_datatables_mode
#from ipydatagrid import DataGrid
from itables import init_notebook_mode
init_notebook_mode(all_interactive=True)
#init_notebook_mode(connected=True)
import itables.options as itablesopt
# display table options
#itablesopt.lengthMenu = [2, 5, 10, 20, 50, 100, 200, 500]
#itablesopt.maxBytes = 10000 , 0 to disable
#itablesopt.maxRows
#itablesopt.maxColumns

#%load_ext jupyter_require
#%requirejs d3 https://d3js.org/d3.v5.min
#init_datatables_mode()
In [2]:
%autoreload 2
import omics_api
from omics_api import *
In [3]:
# Flags to emable example
others=False
PLOT_PHEN=True
WGCNA=others
GWAS=others
MATRIXEQT=others
VERBOSE=True
MERGE=others
REQUERY_URL=False

CHECK_BE=True  # check and correct batch effect
# imputation strategy from https://doi.org/10.1038/s41598-023-30084-2
IMPUTE_M1=True # global mean
IMPUTE_M2=True # batch mean


DEBUGGNG=False

# strict setting
#maxp=1e-5

# threshold settings
maxpgwas=1e-20
maxpeqtl=1e-5
maxpwgcna=1e-5
mincorwgcna=0.7
cortopnwgcna=None
gstopnwgcna=None

top_dfgwas=[]
top_dfwgcna=[]
top_dfeqtl=[]
myunit='percent_of_dw'
#SHOW_ALL
#SHOW_DEBUG
#SHOW_ERRORONLY



if DEBUGGNG:
    setVariables(loglevel=getSetting('SHOW_DEBUG'),keep_unit=myunit)
else:
    setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
#setVariables(loglevel=getSetting('SHOW_ERRORONLY'))
"set variables: \nkeep_unit=percent_of_dw\nr_path=Rscript\nplink_path=plink\nLOG_LEVEL=1\nunit_converter={('percent_of_dw', 'ug_per_gdw'): 10000.0, ('ug_per_gdw', 'percent_of_dw'): 0.0001}"

Multiple data sources¶

This demo plots dstribution of datasets from multiple sources

Avalable options for phenotypes

In [4]:
data = requests.get('https://icgrc.info/api/user/phenotype/dataset').json()
print('Phenotype datasets(phends) options')
display_table(data,columns=['phen_dataset','unit_name','samples_count','trait_count'])
Phenotype datasets(phends) options
phen_dataset unit_name samples_count trait_count
Loading... (need help?)
In [5]:
#api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020&byacc=1&hassnp=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Zager2019&private=1&byacc=1&hassnp=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=GloerfeltTarp2023&private=1&byacc=1&hassnp=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019,GloerfeltTarp2023&private=1&byacc=1&hassnp=1&with_stdunits=1"]
#api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Zager2019&private=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=GloerfeltTarp2023&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019,GloerfeltTarp2023&with_stdunits=1"]
#label_url=['Booth2020','Zager2019','GloerfeltTarp2023','BGZphenotypes']
api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Zager2019&private=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019&with_stdunits=1"]
label_url=['Booth2020','Zager2019','BZphenotypes']
label2color=dict()
label2color['Azman2023']='red'
label2color['Booth2020']='blue'
label2color['GloerfeltTarp2023']='green'
label2color['Zager2019']='orange'
label2color['BZphenotypes']='yellow'

keep_unit='percent_of_dw'
#keep_unit='ug_per_gdw'
n_bins=10

icnt=0
dfs=[]
dfs_imputed_m2=[]
phenall=set()
keep_samples=set()
keep_phenotypes=set()
if PLOT_PHEN:
	for iurl in api_url:
		print(label_url[icnt])
		df_raw= read_url(iurl, label_url[icnt],requery=REQUERY_URL)
	
		if VERBOSE and icnt==0:
			display('in original units')
			display(drop_allnazero_rowcol(df_raw.loc[df_raw['datatype'].str.startswith('3 PHEN')]))

		(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit='percent_of_dw')
		phenall.update(set(get_phenotypes(c_converted_phenunits_values)))
		plot_histograms(c_converted_phenunits_values, 'changed_to_' + keep_unit, label_url[icnt]) #,label2color=label2color)
	
		if VERBOSE and icnt==0:
	
			display('coverted to ' +  keep_unit)
			display(drop_allnazero_rowcol(c_converted_phenunits.loc[c_converted_phenunits['datatype'].str.startswith('3 PHEN')]))
	
			display('coverted to (values only) ' +  keep_unit)
			display(drop_allnazero_rowcol(c_converted_phenunits_values.loc[c_converted_phenunits_values['datatype'].str.startswith('3 PHEN')]))
		
		dfs.append(c_converted_phenunits_values)
        
		if IMPUTE_M2:
			(df_corrected,dummy)=check_batcheffects(c_converted_phenunits_values, label_url[icnt], TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=False) #properties=['phenotype_dataset']) #properties=['NCBI BioProject'])
			dfs_imputed_m2.append(df_corrected)
		icnt+=1
Booth2020
'in original units'
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
'coverted to percent_of_dw'
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
'coverted to (values only) percent_of_dw'
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
'cannot insert property, already exists'
original data
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
Click here to download: becorrected_Booth2020.tsv
'generated becorrected_Booth2020.tsv'
becorrected_Booth2020.tsv
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
Zager2019
'cannot insert property, already exists'
original data
datatype property SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922
Loading... (need help?)
Click here to download: becorrected_Zager2019.tsv
'generated becorrected_Zager2019.tsv'
becorrected_Zager2019.tsv
datatype property SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922
Loading... (need help?)
BZphenotypes
'for PCA has NaN'
'imputing using mean'
'cannot insert property, already exists'
original data
datatype property SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922 SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
Click here to download: becorrected_BZphenotypes.tsv
'generated becorrected_BZphenotypes.tsv'
becorrected_BZphenotypes.tsv
datatype property SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922 SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
/home/lmansu10/jupyter/omics_api_utils.py:4403: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df.loc[:,'datatype']=df1.loc[:,'datatype']
/home/lmansu10/jupyter/omics_api_utils.py:4403: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df.loc[:,'datatype']=df1.loc[:,'datatype']
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
In [6]:
if PLOT_PHEN:
    phenminmaxbin=None
    plot_histograms_multi(dfs, keep_unit,label_url,phenminmaxbin,label2color=label2color,nbins=n_bins,heatmap=True)
Path (generated 3_-7202988356578264128_phenotypes_percent_of_dw.png) doesn't exist. It may still be in the process of being generated, or you may have the incorrect path.
'file dont exists generated 3_-7202988356578264128_phenotypes_percent_of_dw.png'
Path (generated 3_-7202988356578264128_phenotypes_percent_of_dw_density.png) doesn't exist. It may still be in the process of being generated, or you may have the incorrect path.
'file dont exists generated 3_-7202988356578264128_phenotypes_percent_of_dw_density.png'
No description has been provided for this image
<Figure size 2000x2000 with 0 Axes>
No description has been provided for this image
Click here to download: Booth2020-Zager2019-BZphenotypes.phen2samplesrc-by_sample_dataset.txt
'generated Booth2020-Zager2019-BZphenotypes.phen2samplesrc-by_sample_dataset.txt'
<Figure size 640x480 with 0 Axes>
No description has been provided for this image
Click here to download: Booth2020-Zager2019-BZphenotypes.phensrc2sample-by_trait_dataset.txt
'generated Booth2020-Zager2019-BZphenotypes.phensrc2sample-by_trait_dataset.txt'
Click here to download: Booth2020-Zager2019-BZphenotypes.phensrc2sample-by_dataset_trait.txt
'generated Booth2020-Zager2019-BZphenotypes.phensrc2sample-by_dataset_trait.txt'
<Figure size 640x480 with 0 Axes>
No description has been provided for this image

The imputation and batch correction strategies described in (Hui 2023, https://doi.org/10.1038/s41598-023-30084-2) are used here. Briefly, M1 uses global mean imputation, M2 uses batch mean imputation, and M3 uses cross-batch mean imputation. They found M2 gave the best performance. M1 and M2 strategies are tried here.

Plot original data after unit conversion data, and data imputed by batch

In [7]:
if PLOT_PHEN and IMPUTE_M2:
    phenminmaxbin=None
    df_orgcor=dfs + dfs_imputed_m2
    label_orgcor=[]
    for label in label_url:
        label_orgcor.append(label)
    for label in label_url:
        label_orgcor.append('m2_' + label)
    label2color['m2_Booth2020']='cyan'
    label2color['m2_Zager2019']='magenta'
    label2color['m2_BZphenotypes']='gray'        
    plot_histograms_multi(df_orgcor, keep_unit,label_orgcor,phenminmaxbin,label2color=label2color,nbins=n_bins)
Path (generated 6_-3390368805713138963_phenotypes_percent_of_dw.png) doesn't exist. It may still be in the process of being generated, or you may have the incorrect path.
'file dont exists generated 6_-3390368805713138963_phenotypes_percent_of_dw.png'
Path (generated 6_-3390368805713138963_phenotypes_percent_of_dw_density.png) doesn't exist. It may still be in the process of being generated, or you may have the incorrect path.
'file dont exists generated 6_-3390368805713138963_phenotypes_percent_of_dw_density.png'
No description has been provided for this image
<Figure size 2000x2000 with 0 Axes>

Check batch effect, imputation and batch effect correction¶

Check for batch effects using Principal Component Analysis, and correction by ComBat or EmpericalBayesLM. PCA and ComBat require imputation accomplished by scikit-learn SimpleImputer (most_frequent, mean, median) and KNNImputer. Another option is Probabilistic PCA, PPCA, can compute PCA with missing values, and returns imputed data at the same time.

The available options are:

on_missing [mean,median,most_frequent,KNNImputer,ppca]

be_method [rcombat, eblm]

These tools are typically used on high throughput datasets like transcriptomic expression, proteomics or metabolomics with hundreds to thousands of data points. Here we use it on published, low-throughput metabolite concentration datasets.

Required python modules

  • scikit-learn
  • pyppca
  • plotly

Required R packages

  • sva
  • WGCNA

M1 imputation (global mean)

In [8]:
if CHECK_BE and IMPUTE_M1:
    #api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019,GloerfeltTarp2023&with_stdunits=1"]
    #label_url=['BGZphenotypes']
    api_url_m1 = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019&with_stdunits=1"]
    label_url_m1=['BZphenotypes']
    icnt=0
    df_raw= read_url(api_url_m1[0], label_url_m1[0],requery=REQUERY_URL)
    (c_converted_phenunits, dfphen)=convert_units_to(df_raw,to_unit='percent_of_dw')
    (df_corrected, map_corrected_bybatch)=check_batcheffects(dfphen, label_url_m1[0], TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=True) #properties=['phenotype_dataset']) #properties=['NCBI BioProject'])
    #print(list(map_corrected_bybatch.keys()))
    #plot_histograms_multi(list(map_corrected_bybatch.keys()), keep_unit,list(map_corrected_bybatch.values()),phenminmaxbin,label2color=label2color,nbins=n_bins)    
'for PCA has NaN'
'imputing using mean'
'correcting batch effect using rcombat'
'Rscript Langfelder-combat.R BZphenotypes BZphenotypes.rcombat.data.csv BZphenotypes.rcombat.annot.csv phenotype_dataset > /dev/null'
Loading required package: mgcv
Loading required package: nlme
This is mgcv 1.9-0. For overview type 'help("mgcv-package")'.
Loading required package: genefilter
Loading required package: BiocParallel
Found2batches
Adjusting for0covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments
Adjusting the Data

Click here to download: BZphenotypes.pca.png
'generated BZphenotypes.pca.png'
Click here to download: BZphenotypes.pca.3d.png
'generated BZphenotypes.pca.3d.png'
Click here to download: BZphenotypes.pca.3d.html
'generated BZphenotypes.pca.3d.html'
Click here to download: BZphenotypes.be.pca.png
'generated BZphenotypes.be.pca.png'
Click here to download: BZphenotypes.be.pca.3d.png
'generated BZphenotypes.be.pca.3d.png'
Click here to download: BZphenotypes.be.pca.3d.html
'generated BZphenotypes.be.pca.3d.html'
original data
datatype property SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922 SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
Click here to download: becorrected_BZphenotypes.tsv
'generated becorrected_BZphenotypes.tsv'
becorrected_BZphenotypes.tsv
datatype property SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922 SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452
Loading... (need help?)
/home/lmansu10/jupyter/omics_api_utils.py:4403: SettingWithCopyWarning:


A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/home/lmansu10/jupyter/omics_api_utils.py:4403: SettingWithCopyWarning:


A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

M2 imputation (batch mean)

In [9]:
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
if CHECK_BE and IMPUTE_M2:
    dfs_imputed_m2_bz=pd.merge(dfs_imputed_m2[0],dfs_imputed_m2[1], left_on=['datatype','property'], right_on=['datatype','property'], how = 'outer')
    (df_corrected_rcb, map_corrected_bybatch_rcb)=check_batcheffects(dfs_imputed_m2_bz, 'm2rcb_BZphenotypes', TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=True,be_method='rcombat') #properties=['phenotype_dataset'])
    (df_corrected_eblm, map_corrected_bybatch_eblm)=check_batcheffects(dfs_imputed_m2_bz, 'm2eblm_BZphenotypes', TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=True,be_method='eblm') #properties=['phenotype_dataset'])    
    
"set variables: \nkeep_unit=percent_of_dw\nr_path=Rscript\nplink_path=plink\nLOG_LEVEL=1\nunit_converter={('percent_of_dw', 'ug_per_gdw'): 10000.0, ('ug_per_gdw', 'percent_of_dw'): 0.0001}"
'for PCA has NaN'
'imputing using mean'
'correcting batch effect using rcombat'
'Rscript Langfelder-combat.R m2rcb_BZphenotypes m2rcb_BZphenotypes.rcombat.data.csv m2rcb_BZphenotypes.rcombat.annot.csv phenotype_dataset > /dev/null'
Loading required package: mgcv
Loading required package: nlme
This is mgcv 1.9-0. For overview type 'help("mgcv-package")'.
Loading required package: genefilter
Loading required package: BiocParallel
Found2batches
Adjusting for0covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments
Adjusting the Data

Click here to download: m2rcb_BZphenotypes.pca.png
'generated m2rcb_BZphenotypes.pca.png'
Click here to download: m2rcb_BZphenotypes.pca.3d.png
'generated m2rcb_BZphenotypes.pca.3d.png'
Click here to download: m2rcb_BZphenotypes.pca.3d.html
'generated m2rcb_BZphenotypes.pca.3d.html'
Click here to download: m2rcb_BZphenotypes.be.pca.png
'generated m2rcb_BZphenotypes.be.pca.png'
Click here to download: m2rcb_BZphenotypes.be.pca.3d.png
'generated m2rcb_BZphenotypes.be.pca.3d.png'
Click here to download: m2rcb_BZphenotypes.be.pca.3d.html
'generated m2rcb_BZphenotypes.be.pca.3d.html'
original data
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452 SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922
Loading... (need help?)
Click here to download: becorrected_m2rcb_BZphenotypes.tsv
'generated becorrected_m2rcb_BZphenotypes.tsv'
becorrected_m2rcb_BZphenotypes.tsv
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452 SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922
Loading... (need help?)
/home/lmansu10/jupyter/omics_api_utils.py:4403: SettingWithCopyWarning:


A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/home/lmansu10/jupyter/omics_api_utils.py:4403: SettingWithCopyWarning:


A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

'for PCA has NaN'
'imputing using mean'
'correcting batch effect using eblm'
'Rscript Langfelder-eblm.R m2eblm_BZphenotypes m2eblm_BZphenotypes.eblm.data.csv m2eblm_BZphenotypes.eblm.annot.csv phenotype_dataset > /dev/null'
Loading required package: mgcv
Loading required package: nlme
This is mgcv 1.9-0. For overview type 'help("mgcv-package")'.
Loading required package: genefilter
Loading required package: BiocParallel
Loading required package: dynamicTreeCut
Loading required package: fastcluster

Attaching package: ‘fastcluster’

The following object is masked from ‘package:stats’:

    hclust



Attaching package: ‘WGCNA’

The following object is masked from ‘package:stats’:

    cor

Click here to download: m2eblm_BZphenotypes.pca.png
'generated m2eblm_BZphenotypes.pca.png'
Click here to download: m2eblm_BZphenotypes.pca.3d.png
'generated m2eblm_BZphenotypes.pca.3d.png'
Click here to download: m2eblm_BZphenotypes.pca.3d.html
'generated m2eblm_BZphenotypes.pca.3d.html'
Click here to download: m2eblm_BZphenotypes.be.pca.png
'generated m2eblm_BZphenotypes.be.pca.png'
Click here to download: m2eblm_BZphenotypes.be.pca.3d.png
'generated m2eblm_BZphenotypes.be.pca.3d.png'
Click here to download: m2eblm_BZphenotypes.be.pca.3d.html
'generated m2eblm_BZphenotypes.be.pca.3d.html'
original data
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452 SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922
Loading... (need help?)
Click here to download: becorrected_m2eblm_BZphenotypes.tsv
'generated becorrected_m2eblm_BZphenotypes.tsv'
becorrected_m2eblm_BZphenotypes.tsv
datatype property SAMN13750438 SAMN13750439 SAMN13750440 SAMN13750441 SAMN13750442 SAMN13750443 SAMN13750444 SAMN13750445 SAMN13750446 SAMN13750447 SAMN13750448 SAMN13750449 SAMN13750450 SAMN13750451 SAMN13750452 SAMN10330896 SAMN10330897 SAMN10330898 SAMN10330899 SAMN10330900 SAMN10330901 SAMN10330902 SAMN10330903 SAMN10330904 SAMN10330905 SAMN10330906 SAMN10330907 SAMN10330908 SAMN10330909 SAMN10330910 SAMN10330911 SAMN10330912 SAMN10330913 SAMN10330914 SAMN10330915 SAMN10330916 SAMN10330917 SAMN10330918 SAMN10330919 SAMN10330920 SAMN10330921 SAMN10330922
Loading... (need help?)
/home/lmansu10/jupyter/omics_api_utils.py:4403: SettingWithCopyWarning:


A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/home/lmansu10/jupyter/omics_api_utils.py:4403: SettingWithCopyWarning:


A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Plot and compare the batch imputed, ComBat corrected and EmpericalBayesLM corrected data

In [10]:
if PLOT_PHEN and IMPUTE_M2:
    phenminmaxbin=None
    '''
    df_orgcor=dfs.copy() #+ dfs_imputed_m2
    label_orgcor=label_url.copy() # []
    '''
    label_orgcor=[]
    df_orgcor=dfs_imputed_m2.copy()
    for label in label_url:
        label_orgcor.append('m2_' + label)
    
    display(label_orgcor)

    if True:
        for batch in list(map_corrected_bybatch_rcb.keys()):
            label_orgcor.append('m2rcb_' + batch)
            df_orgcor.append(map_corrected_bybatch_rcb[batch])
        label_orgcor.append('m2rcb_BZphenotypes')
        df_orgcor.append(df_corrected_rcb)                       
        
    if True:
        for batch in list(map_corrected_bybatch_eblm.keys()):
            label_orgcor.append('m2eblm_' + batch)
            df_orgcor.append(map_corrected_bybatch_eblm[batch])
        label_orgcor.append('m2eblm_BZphenotypes')
        df_orgcor.append(df_corrected_eblm)                        

    display(label_orgcor)
    label2color['m2_Booth2020']='cyan'
    label2color['m2_Zager2019']='magenta'
    label2color['m2_BZphenotypes']='gray'        
    label2color['m2rcb_Booth2020']='darkblue'
    label2color['m2rcb_Zager2019']='pink'
    label2color['m2rcb_BZphenotypes']='brown'    
    label2color['m2eblm_Booth2020']='lightgreen'
    label2color['m2eblm_Zager2019']='darkviolet'
    label2color['m2eblm_BZphenotypes']='lightsalmon'    
    plot_histograms_multi(df_orgcor, keep_unit,label_orgcor,phenminmaxbin,label2color=label2color,nbins=n_bins)
['m2_Booth2020', 'm2_Zager2019', 'm2_BZphenotypes']
['m2_Booth2020',
 'm2_Zager2019',
 'm2_BZphenotypes',
 'm2rcb_Booth2020',
 'm2rcb_Zager2019',
 'm2rcb_BZphenotypes',
 'm2eblm_Booth2020',
 'm2eblm_Zager2019',
 'm2eblm_BZphenotypes']
Path (generated 9_-2897765732204754825_phenotypes_percent_of_dw.png) doesn't exist. It may still be in the process of being generated, or you may have the incorrect path.
'file dont exists generated 9_-2897765732204754825_phenotypes_percent_of_dw.png'
Path (generated 9_-2897765732204754825_phenotypes_percent_of_dw_density.png) doesn't exist. It may still be in the process of being generated, or you may have the incorrect path.
'file dont exists generated 9_-2897765732204754825_phenotypes_percent_of_dw_density.png'
No description has been provided for this image
<Figure size 2000x2000 with 0 Axes>

WGCNA Analysis¶

This demo uses expression and phenotype data for Weighted Gene Co-expression Network Analysis (WGCNA), using the WGCNA R package (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA). The output is the correlation of Gene Modules to Traits, were modules are a set of genes with similar expresson patterns. The top trait-module pairs are returned with the set number or p-value cutoff.

Requirements

  • R
  • R packages: WGCNA

Avalable options for expression

In [11]:
data = requests.get('https://icgrc.info/api/user/expression/dataset').json()
print('Expression datasets (expds) options')
#print(pd.DataFrame(data,columns=['expds','analysis_name']).to_string(index=False))
#display(pd.DataFrame(data,columns=['expds','analysis_name']))
display_table(data,columns=['expds','analysis_name'])

data = requests.get('https://icgrc.info/api/user/expression/transet').json()
print('Transcriptome set (transet) options')
display_table(data,columns=['transet'])
Expression datasets (expds) options
expds analysis_name
Loading... (need help?)
Transcriptome set (transet) options
transet
Loading... (need help?)
In [12]:
#import omics_api
#from omics_api import *

phends='Zager2019,Booth2020'
expds='21trichcs10'
transet='cs10'
#label_url=['21trichcs10_cs10_zagerbooth']
label_url=['21trichcs10_cs10_zagerbooth_be']

api_url = ['https://icgrc.info/api/user/expression,phenotype/list?transet=' + transet + '&expds=' + expds + '&phends=' + phends + '&with_stdunits=0']

#api_url = ['https://icgrc.info/api/user/expression,phenotype/list?transet=all&expds=21trichpkclone109&phends=Zager2019%2CBooth2020&with_stdunits=0&tablelimit=100000&limit=100000']
#label_url=['21trichpk_zagerbooth']

#api_url = ['https://icgrc.info/api/user/expression,phenotype/list?transet=all&expds=21trichcs10&phends=Zager2019&with_stdunits=0&tablelimit=100000&limit=100000']
#label_url=['21trichcs10_zager']

icnt=0
top_dfwgcna=[]

if WGCNA :
	for iurl in api_url:
		print(label_url[icnt])
		df_raw= read_url(iurl, label_url[icnt],requery=REQUERY_URL)
		(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
		if False: #CHECK_BE
			#display(c_converted_phenunits_values)
			(df_corrected, map_corrected_bybatch)=check_batcheffects(c_converted_phenunits_values, label_url[icnt], TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='ppca',correct_BE=True) #properties=['phenotype_dataset']) #properties=['NCBI BioProject'])
			c_converted_phenunits_values=df_corrected

		moduletrait=[] #['darkred,cannabidiol', 'royalblue,alpha-pinene', 'royalblue,Delta9_tetrahydrocannabinol']
		topmodules=do_wgcna_prepare(c_converted_phenunits_values,dflabel=label_url[icnt],cortopn=cortopnwgcna,maxp=maxpwgcna,mincor=mincorwgcna,recalc=True)
		break
		for itop in topmodules:
			moduletrait.append(itop[0]+","+itop[1])
		dfwgcn=do_wgcna_modulesgenes(c_converted_phenunits_values,dflabel=label_url[icnt],moduletrait=moduletrait,maxp=maxpwgcna,gstopn=gstopnwgcna,mings=mincorwgcna,annotate=True)
		#do_wgcna_visualize(c_converted_phenunits_values,dflabel=label_url[icnt],recalc=True,moduletrait=moduletrait)
		top_dfwgcna.append(dfwgcn)
		#display(Image(filename=label_url[0] + '.ModuleTraitRelationship.png'))
		#display(Image(filename=label_url[0] + '.ClusterDendogram.png'))

		icnt+=1

eQTL analysis¶

This demo uses expression and variant data for eQTL analysis using Matrix eQTL R package (https://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/runit.html). The analysis can be between any SNP-gene pair, neighboring pairs (cis), or distant pairs (trans). The output are the top SNP-Gene pairs the set number or p-value cutoff.

Requirements

  • R
  • R packages: MatrixEQTL

Avalaible options for variants

In [13]:
data = requests.get('https://icgrc.info/api/user/variant/dataset').json()
print('Variant reference (ref) and dataset (snpds) options')
display_table(data,columns=['ref','snpds'])
Variant reference (ref) and dataset (snpds) options
ref snpds
Loading... (need help?)

Select options

In [14]:
ref="cs10"
snpds='21trichs'
expds='21trichcs10'
transet='cs10'
querygenes='cannabid,cannabic,cannabiv,cannabin,terpene'


api_url = ["https://icgrc.info/api/user/expression,variant/" + querygenes + "?ref=" + ref + "&snpds=" + snpds + "&transet=" + transet + "&expds=" + expds + "&tablelimit=100000000&limit=100000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000"]
label_url=["eqtlb_terpcan_" + snpds + "_" + expds]
#label_url=["eqtl_terpcan_" + snpds + "_allsnps_" + expds]
In [15]:
icnt=0
top_dfeqtl=[]
if MATRIXEQT:
#if True:
	for iurl in api_url:
		print(label_url[icnt])
		df_raw= read_url(iurl, label_url[icnt],requery=REQUERY_URL)
		(dfeqtlall,dfeqtlcis,dfeqtltrans)=do_matrixeqtl(df_raw,label_url[icnt],annot='cs10', recodeplink=False,recalc=True,maxp=maxpeqtl,expgeneloc_file='data/cs10xm_exp.genesloc.tsv')
		top_dfeqtl.append(dfeqtlall)
		#display(Image(filename=label_url[0] + ".eqtlpvalue.png"))
		#display(Image(filename=label_url[0] + ".eqtlqqplot.png"))
		icnt+=1

Metabolite SNP Association (semi-mGWAS)¶

This demonstration uses traits/metabolite associaton with SNPs using plink --assoc feature. This generates the Manhattan Plot for each trait on the genomic location of genes that satify the functional annotation or accession constraints. The result is the list of top SNP-Trait pairs according to the set number or p-value cutoff.

Requirements

  • R
  • Python package: qqman
  • plink
In [16]:
if GWAS: # snp, phen
	snpds='21trichs'
	#phends='Booth2020'
	phends='Zager2019,Booth2020'
	querygenes="GO:0006721,GO:0008299,GO:0030639,terpene,isopentenyl,cannabid,cannabic,cannabiv,cannabin"
	geneslabel='cannterp'
	ref='cs10'
	label_url=['21trichs_cs10_zagerbooth_cannterp_covar']
	#label_url=['21trich_allsnps_cs10_zagerbooth_cannterp']
	
	api_url = ["https://icgrc.info/api/user/variant,phenotype/"+ querygenes + "?ref=" + ref + "&snpds=" + snpds + "&tablelimit=10000000000&limit=2000000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000&phends=" + phends + "&with_stdunits=1"]

	
In [17]:
dfs=[]
phenall=set()
icnt=0
if GWAS:
	for iurl in api_url:
		print(label_url[icnt])
		df_raw= read_url(iurl, label_url[icnt],requery=REQUERY_URL)
		(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
		moduletrait=[] #['darkred,cannabidiol', 'royalblue,alpha-pinene', 'royalblue,Delta9_tetrahydrocannabinol']    
		dfs.append(c_converted_phenunits_values)
		phenall.update(set(get_phenotypes(c_converted_phenunits_values)))
	
In [18]:
if GWAS:
	select_options(phenall, waitInput=False)

Select phenotypes to process

Set the of list numbers for phenotypes to perform mGWAS

In [19]:
#selectionid=[3,4,6,7,8,9,10,11,15,16,17,19,21,28,29,30,31,32,33,34,45,46,47,53,55]
selectionid=[3,4,6,7]
GWAS_FROMPLINK=False
In [20]:
#%autoreload 2
setVariables(loglevel=getSetting('SHOW_DEBUG'),keep_unit=myunit)
top_dfgwas=[]
if GWAS:
	selection=select_options(phenall, waitInput=False, selected=selectionid)
	print('selections: ' + str(selection))
	idf=0
	df_gene=pd.read_csv('data/gene_cs10.tsv',sep="\t")
	for df in dfs:
		dfgwas=do_gwas(df, label_url[idf],myunit,phenotypes=selection,rerunplink=True,maxp=maxpgwas,recalc=True,annot='cs10') #,covar=['phenotype_dataset'],assocmethod='linear') #,df_genes=df_gene,annot='cs10') 
		top_dfgwas.append(dfgwas)
		#printdisplay(MESSAGE_INFO,label_url[idf] + '.gwas.top.tsv') #Image(filename=label_url[idf] + '_gwasmp_' + myunit + '_' + label_url[idf] +  '.qassoc.counts.png'))
		idf+=1
"set variables: \nkeep_unit=percent_of_dw\nr_path=Rscript\nplink_path=plink\nLOG_LEVEL=2\nunit_converter={('percent_of_dw', 'ug_per_gdw'): 10000.0, ('ug_per_gdw', 'percent_of_dw'): 0.0001}"

Merge multi tools¶

Merge the result from the tools above to find multiple evedince of association. The steps include

  • eQTL gives top snp-expression pairs, and snp gene-expressed gene pairs
  • WGCNA gives top expressed gene - trait pairs
  • mGWAS gives top snp-trait, and snp gene-trait pairs

The merging connects the expression genes common from the eQTL and WGCNA results, giving new snp gene-trait pairs

  • The new snp gene-trait pairs are then intersected with the mGWAS result.

The intersecting pairs have two evidence paths of gene-gtrait association. The result below gives 144 gene-trait pairs, with 23 genes

In [21]:
#%autoreload 2
#import omics_api
#from omics_api import *
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)

mergeoutfle='merged_21trichcs10_alltraits.tsv'
def printdflists(l):
	for df in l:
		print(df.columns.values.tolist())
#setVariables(loglevel=getSetting('SHOW_DEBUG'))
printdflists(top_dfeqtl)
printdflists(top_dfwgcna)
printdflists(top_dfgwas)
MERGE=True
if MERGE:
	df_genes=pd.read_csv('data/gene_cs10.tsv',sep="\t")
	merge_matrixeqtl_wgcna_gwas(eqtls=top_dfeqtl, wgcnas=top_dfwgcna,gwass=top_dfgwas,outfile=mergeoutfle,use_snpgene=True,df_genes=df_genes,recalc=False)
"set variables: \nkeep_unit=percent_of_dw\nr_path=Rscript\nplink_path=plink\nLOG_LEVEL=1\nunit_converter={('percent_of_dw', 'ug_per_gdw'): 10000.0, ('ug_per_gdw', 'percent_of_dw'): 0.0001}"
'File df_eqtl_wgcna_onexpgenes_merged_21trichcs10_alltraits.tsv dont exists'
'loaded df_eqtl_wgcna_onexpgenes_merged_21trichcs10_alltraits.tsv'
eqtl_wgcna_onexpgene_merged_21trichcs10_alltraits.tsv
snps snpgenes expgenes gene pvalue trait GS p.GS
Loading... (need help?)
Click here to download: merged_21trichcs10_alltraits.tsv
'loaded merged_21trichcs10_alltraits.tsv'
df_eqtl_wgcna_onexpgenes_gwas_onsnpgenetrait
trait snpgenes pvalue_eqtl pvalue_eqtl.1 GS_wgcna pGS_wgcna pGS_wgcna.1 pvalue_gwas pvalue_gwas.1
Loading... (need help?)
triple_snpgenetrait_merged_21trichcs10_alltraits.tsv
Click here to download: triple_snpgenetrait_merged_21trichcs10_alltraits.tsv
trait snpgenes pvalue_eqtl_count pvalue_eqtl_min GS_wgcna_max pGS_wgcna_count pGS_wgcna_min pvalue_gwas_count pvalue_gwas_min gene contig fmin fmax strand locus gb_keyword go_term interpro_value
Loading... (need help?)
In [22]:
tgzdownloads('alltgz1', txt=True, img=True)
'tar -cvzf alltgz1.tgz -T dwlist.txt > /dev/null'
Click here to download: alltgz1.tgz
'generated alltgz1.tgz'

Running semi-offline using large dataset¶

Performing genome-wide or transcriptome-wide analyses requires large datasets. It is not practical to use retail web-service API query but the datasets may be downloaded in bulk, stored, and accessed locally. The API has feature to use local file instead of constantly querying the web-server. Most of these files are still downloadable using the web-service but requested in bulk by datasets. These datasets include:

  • gene files by reference and annotation from api/user/gene/list
  • expression matrix by dataset from api/user/expression/list
  • variant SNPs data in binary Plink format by dataset avaialable at

This section demonstrates bulk downloading the necessary datasets, and repeating the analyses described above using whole-genome SNPs and whole-transcriptome expression data. Since these runs take time, run this as a python script from the command line outside of jupyter.

In [23]:
#download gene annotation and save to data directory
datadir='data1'
GENEFILE=datadir+'/gene_cs10.tsv'
#pd.read_csv('https://icgrc.info/api/user/gene/list?annot=cs10',sep="\t").to_csv(GENEFILE,sep="\t",index=False)

#download expression matrix save to data directory
EXPFILE=datadir + '/21trichcs10_allexp.tsv'
#pd.read_csv('https://icgrc.info/api/user/expression/list?expds=21trichcs10',sep="\t").to_csv(EXPFILE,sep="\t",index=False)

#EXPFILE=datadir + '/GaoGuerrieroConneely_allexp.tsv'
#EXPFILE=datadir + '/Gao_allexp.tsv'
#pd.read_csv('https://icgrc.info/api/user/expression/list?transet=all&expds=Massimino2017&tablelimit=100000&limit=1000',sep="\t").to_csv(EXPFILE,sep="\t",index=False)


#download variant file in binary plink format at 
PLINKFILE='data/cs10-21trichomes-all-gatkgenotype-allsnps-samn-plink-nofam'
#PLINKFILE=None

PHENFILE=datadir+'/phen_all.tsv'
#pd.read_csv('https://icgrc.info/api/user/phenotype/list',sep="\t").to_csv(PHENFILE,sep="\t",index=False)
In [24]:
if False:
	import datetime
	setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
	# hold top results
	top_dfwgcna=[]
	top_dfeqtl=[]
	top_dfgwas=[]

	# enable module
	WGCNA=True
	EQTL=True
	GWAS=True
	MERGE=True
	REQUERY_URL=False

	phends='Zager2019,Booth2020'
	expds='21trichcs10'
	transet='cs10'
	label_url=None
	label_wgcna=['wgcna_21trichcs10allexp_cs10_zagerbooth_b']
	url_wgcna = ['https://icgrc.info/api/user/expression,phenotype/list?transet=' + transet + '&expds=' + expds + '&phends=' + phends + '&with_stdunits=0&tablelimit=100000&limit=100000']


	icnt=0
	if WGCNA :
		print('STARTED WGCNA ' + str(datetime.datetime.now()))
		for iurl in url_wgcna:
			ilabel=label_wgcna[icnt]
			df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
			(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
			moduletrait=[]
			topmodules=do_wgcna_prepare(c_converted_phenunits_values,dflabel=ilabel,cortopn=cortopnwgcna,maxp=maxpwgcna,mincor=mincorwgcna,recalc=False,exp_file=EXPFILE)
			for itop in topmodules:
				moduletrait.append(itop[0]+","+itop[1])
			dfwgcn=do_wgcna_modulesgenes(c_converted_phenunits_values,dflabel=ilabel,moduletrait=moduletrait,maxp=maxpwgcna,gstopn=gstopnwgcna,mings=mincorwgcna)
			top_dfwgcna.append(dfwgcn)
			icnt+=1


	snpds='21trichs'
	phends='Zager2019,Booth2020'
	querygenes="GO:0006721,GO:0008299,GO:0030639,terpene,isopentenyl,cannabid,cannabic,cannabiv,cannabin"
	geneslabel='cannterp'
	ref='cs10'
	label_gwas=['gwas_21trich_allsnps_cs10_zagerbooth_cannterp_b']
	url_gwas= ["https://icgrc.info/api/user/variant,phenotype/"+ querygenes + "?ref=" + ref + "&snpds=" + snpds + "&tablelimit=10000000000&limit=2000000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000&phends=" + phends + "&with_stdunits=1"]

	phenall=set()
	icnt=0
	df_gwas=[]
	# collect available phenotypes first to make selection
	if GWAS:
		print('STARTED GWAS ' + str(datetime.datetime.now()))
		for iurl in url_gwas:
			ilabel=label_gwas[icnt]
			df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
			(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
			df_gwas.append(c_converted_phenunits_values)
			phenall.update(set(get_phenotypes(c_converted_phenunits_values)))

		# show selection options, set to waitInput=True to get interactive response. For now selection selectionid is preselected
		select_options(phenall, waitInput=False)

		selectionid=[3,4,6,7,8,9,10,11,15,16,17,19,21,28,29,30,31,32,33,34,45,46,47,53,55] # most common cannabinoids/terpenes
		#selectionid=[3,4,6,7],  CBDA/THCA

	if GWAS:
		selection=select_options(phenall, waitInput=False, selected=selectionid)
		# verify selections as as intended
		print('selections: ' + str(selection))
		idf=0
		for df in df_gwas:
			dfgwas=do_gwas(df, label_gwas[idf],myunit,phenotypes=selection,rerunplink=False,maxp=maxpgwas,plink_file=PLINKFILE) #,assocmethod='linear')
			top_dfgwas.append(dfgwas)
			idf+=1


	ref="cs10"
	snpds='21trichs'
	expds='21trichcs10'
	transet='cs10'
	querygenes='cannabid,cannabic,cannabiv,cannabin,terpene'

	url_eqtl = ["https://icgrc.info/api/user/expression,variant/" + querygenes + "?ref=" + ref + "&snpds=" + snpds + "&transet=" + transet + "&expds=" + expds + "&tablelimit=100000000&limit=100000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000"]
	label_eqtl=["eqtl_terpcan_" + snpds + "_allsnpsexps_" + expds+'_relax_b']

	# GENELOCFILE is derived from GENEFILE using only gene_id\tcontig\tfmin\tfmax
	GENELOCFILE=datadir+'/cs10xm_exp.genesloc.tsv'
	pd.read_csv(GENEFILE,sep="\t")[['name','contig','fmin','fmax']].rename(columns={'name':'geneid','contig':'chr','fmin':'s1','fmax':'s2'}).to_csv(GENELOCFILE,sep="\t",index=False)

	icnt=0
	if MATRIXEQT:
		print('STARTED EQTL ' + str(datetime.datetime.now()))
		for iurl in url_eqtl:
			ilabel=label_eqtl[icnt]
			df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
			(dfeqtlall,dfeqtlcis,dfeqtltrans)=do_matrixeqtl(df_raw,ilabel,annot=None, recodeplink=False,maxp=maxpeqtl,plink_file=PLINKFILE,expgeneloc_file=GENELOCFILE,exp_file=EXPFILE)
			top_dfeqtl.append(dfeqtlall)
			icnt+=1

	'''
	top_dfeqtl=[]
	top_dfgwas=[]
	top_dfwgna=[]
	top_dfeqtl.append('eqtl_terpcan_21trichs_allsnpsexps_21trichcs10_relax.eqtl.all.top.tsv')
	top_dfwgcna.append('wgcna_21trichcs10allexp_cs10_zagerbooth_relax.wgcna.top.tsv')
	top_dfgwas.append('gwas_21trich_allsnps_cs10_zagerbooth_cannterp_relax.gwas.top.tsv')
	'''
	merge_output='merged_21trichcs10allsnpsallexps_trait_relax_b.tsv'

	if MERGE:
		print('STARTED MERGE ' + str(datetime.datetime.now()))
		df_gene=pd.read_csv(GENEFILE,sep="\t") #name    contig  fmin    fmax    strand  gb_keyword      go_term interpro_value)
		merge_matrixeqtl_wgcna_gwas(eqtls=top_dfeqtl, wgcnas=top_dfwgcna,gwass=top_dfgwas,outfile=merge_output,use_snpgene=True,df_genes=df_gene)
In [ ]: