ICGRC Omics API Demo (single dataset per tool run)¶
About this notebook The different tools in this notebook use only one dataset for each analysis run. This avoids issues like heavy imputation and batch effect correction encountered when merging data from different sources. The output for each tool are high confidence association between pairs of SNP, gene loci, mRNAs, or traits. The merging step at the end connects entities shared by association pairs from the different analysis tools.
%matplotlib inline
%load_ext autoreload
import os
import requests
from IPython.display import display, Image, FileLink
#from jupyter_datatables import init_datatables_mode
#from ipydatagrid import DataGrid
from itables import init_notebook_mode
init_notebook_mode(all_interactive=True)
#init_notebook_mode(connected=True)
import itables.options as itablesopt
# display table options
#itablesopt.lengthMenu = [2, 5, 10, 20, 50, 100, 200, 500]
#itablesopt.maxBytes = 10000 , 0 to disable
#itablesopt.maxRows
#itablesopt.maxColumns
%autoreload 2
import omics_api
from omics_api import *
# Flags to emable example
others=True
PLOT_PHEN=False
WGCNA=others
GWAS=others
MATRIXEQT=others
VERBOSE=True
MERGE=others
REQUERY_URL=False
CHECK_BE=False # check and correct batch effect
# imputation strategy from https://doi.org/10.1038/s41598-023-30084-2
IMPUTE_M1=False # global mean
IMPUTE_M2=False # batch mean
DEBUGGNG=False
# strict setting
#maxp=1e-5
# threshold settings
maxpgwas=1e-20
maxpeqtl=1e-5
maxpwgcna=1e-5
mincorwgcna=0.7
cortopnwgcna=None
gstopnwgcna=None
top_dfgwas=[]
top_dfwgcna=[]
top_dfeqtl=[]
myunit='percent_of_dw'
#SHOW_ALL
#SHOW_DEBUG
#SHOW_ERRORONLY
if DEBUGGNG:
setVariables(loglevel=getSetting('SHOW_DEBUG'),keep_unit=myunit)
else:
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
#setVariables(loglevel=getSetting('SHOW_ERRORONLY'))
Multiple data sources¶
This demo plots dstribution of datasets from multiple sources
Avalable options for phenotypes
data = requests.get('https://icgrc.info/api/user/phenotype/dataset').json()
print('Phenotype datasets(phends) options')
display_table(data,columns=['phen_dataset','unit_name','samples_count','trait_count'])
Phenotype datasets(phends) options
phen_dataset | unit_name | samples_count | trait_count |
---|---|---|---|
Loading... (need help?) |
api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=Zager2019&private=1&with_stdunits=1","https://icgrc.info/api/user/phenotype/all?phends=GloerfeltTarp2023&with_stdunits=1"]
label_url=['Booth2020','Zager2019','GloerfeltTarp2023']
label2color=dict()
label2color['Azman2023']='red'
label2color['Booth2020']='blue'
label2color['GloerfeltTarp2023']='green'
label2color['Zager2019']='orange'
label2color['BZphenotypes']='yellow'
keep_unit='percent_of_dw'
#keep_unit='ug_per_gdw'
n_bins=10
icnt=0
dfs=[]
dfs_imputed_m2=[]
phenall=set()
keep_samples=set()
keep_phenotypes=set()
if PLOT_PHEN:
for iurl in api_url:
print(label_url[icnt])
df_raw= read_url(iurl, label_url[icnt],requery=REQUERY_URL)
if VERBOSE and icnt==0:
display('in original units')
display(drop_allnazero_rowcol(df_raw.loc[df_raw['datatype'].str.startswith('3 PHEN')]))
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit='percent_of_dw')
phenall.update(set(get_phenotypes(c_converted_phenunits_values)))
plot_histograms(c_converted_phenunits_values, 'changed_to_' + keep_unit, label_url[icnt]) #,label2color=label2color)
if VERBOSE and icnt==0:
display('coverted to ' + keep_unit)
display(drop_allnazero_rowcol(c_converted_phenunits.loc[c_converted_phenunits['datatype'].str.startswith('3 PHEN')]))
display('coverted to (values only) ' + keep_unit)
display(drop_allnazero_rowcol(c_converted_phenunits_values.loc[c_converted_phenunits_values['datatype'].str.startswith('3 PHEN')]))
dfs.append(c_converted_phenunits_values)
if IMPUTE_M2:
(df_corrected,dummy)=check_batcheffects(c_converted_phenunits_values, label_url[icnt], TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='most_frequent',correct_BE=False) #properties=['phenotype_dataset']) #properties=['NCBI BioProject'])
dfs_imputed_m2.append(df_corrected)
icnt+=1
if PLOT_PHEN:
phenminmaxbin=None
plot_histograms_multi(dfs, keep_unit,label_url,phenminmaxbin,label2color=label2color,nbins=n_bins)
if PLOT_PHEN and IMPUTE_M2:
phenminmaxbin=None
df_orgcor=dfs + dfs_imputed_m2
label_orgcor=[]
for label in label_url:
label_orgcor.append(label)
for label in label_url:
label_orgcor.append('m2_' + label)
label2color['m2_Booth2020']='cyan'
label2color['m2_Zager2019']='magenta'
label2color['m2_BZphenotypes']='gray'
plot_histograms_multi(df_orgcor, keep_unit,label_orgcor,phenminmaxbin,label2color=label2color,nbins=n_bins)
Check batch effect, imputation and batch effect correction¶
Check for batch effects by Principal Component Analysis, and correction by pyComBat. PCA and ComBat require imputation accomplished by scikit-learn SimpleImputer (most_frequent, mean, median) and KNNImputer. Another option is Probabilistic PCA, PPCA, can compute PCA with missing values, and returns imputed data at the same time
Required python modules
- scikit-learn
- pyppca
- plotly
- pyComBat
if CHECK_BE and IMPUTE_M1:
#api_url = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019,GloerfeltTarp2023&with_stdunits=1"]
#label_url=['BGZphenotypes']
api_url1 = ["https://icgrc.info/api/user/phenotype/all?phends=Booth2020,Zager2019&with_stdunits=1"]
label_url1=['BZphenotypes']
icnt=0
df_raw= read_url(api_url1[0], label_url1[0],requery=REQUERY_URL)
(c_converted_phenunits, dfphen)=convert_units_to(df_raw,to_unit='percent_of_dw')
(df_corrected, map_corrected_bybatch)=check_batcheffects(dfphen, label_url1[0], TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='ppca',correct_BE=True) #properties=['phenotype_dataset']) #properties=['NCBI BioProject'])
#print(list(map_corrected_bybatch.keys()))
#plot_histograms_multi(list(map_corrected_bybatch.keys()), keep_unit,list(map_corrected_bybatch.values()),phenminmaxbin,label2color=label2color,nbins=n_bins)
if CHECK_BE and IMPUTE_M2:
dfs_imputed_m2_bz=pd.merge(dfs_imputed_m2[0],dfs_imputed_m2[1], left_on=['datatype','property'], right_on=['datatype','property'], how = 'outer')
#(df_corrected_pcb, map_corrected_bybatch_pcb)=check_batcheffects(dfs_imputed_m2_bz, 'm2pcb_BZphenotypes', TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='mean',correct_BE=True,be_method='rcombat') #properties=['phenotype_dataset'])
(df_corrected_rcb, map_corrected_bybatch_rcb)=check_batcheffects(dfs_imputed_m2_bz, 'm2rcb_BZphenotypes', TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='most_frequent',correct_BE=True,be_method='rcombat') #properties=['phenotype_dataset'])
(df_corrected_eblm, map_corrected_bybatch_eblm)=check_batcheffects(dfs_imputed_m2_bz, 'm2eblm_BZphenotypes', TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='ppca',correct_BE=True,be_method='eblm') #properties=['phenotype_dataset'])
if PLOT_PHEN and IMPUTE_M2:
phenminmaxbin=None
'''
df_orgcor=dfs.copy() #+ dfs_imputed_m2
label_orgcor=label_url.copy() # []
'''
label_orgcor=[]
df_orgcor=dfs_imputed_m2.copy()
for label in label_url:
label_orgcor.append('m2_' + label)
display(label_orgcor)
if False:
for batch in list(map_corrected_bybatch_pcb.keys()):
label_orgcor.append('m2pcb_' + batch)
df_orgcor.append(map_corrected_bybatch_pcb[batch])
label_orgcor.append('m2pcb_BZphenotypes')
df_orgcor.append(df_corrected_pcb)
if True:
for batch in list(map_corrected_bybatch_rcb.keys()):
label_orgcor.append('m2rcb_' + batch)
df_orgcor.append(map_corrected_bybatch_rcb[batch])
label_orgcor.append('m2rcb_BZphenotypes')
df_orgcor.append(df_corrected_rcb)
if True:
for batch in list(map_corrected_bybatch_eblm.keys()):
label_orgcor.append('m2eblm_' + batch)
df_orgcor.append(map_corrected_bybatch_eblm[batch])
label_orgcor.append('m2eblm_BZphenotypes')
df_orgcor.append(df_corrected_eblm)
display(label_orgcor)
label2color['m2_Booth2020']='cyan'
label2color['m2_Zager2019']='magenta'
label2color['m2_BZphenotypes']='gray'
label2color['m2rcb_Booth2020']='darkblue'
label2color['m2rcb_Zager2019']='pink'
label2color['m2rcb_BZphenotypes']='brown'
label2color['m2eblm_Booth2020']='lightgreen'
label2color['m2eblm_Zager2019']='darkviolet'
label2color['m2eblm_BZphenotypes']='lightsalmon'
plot_histograms_multi(df_orgcor, keep_unit,label_orgcor,phenminmaxbin,label2color=label2color,nbins=n_bins)
WGCNA Analysis¶
This demo uses expression and phenotype data for Weighted Gene Co-expression Network Analysis (WGCNA), using the WGCNA R package (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA). The output is the correlation of Gene Modules to Traits, were modules are a set of genes with similar expresson patterns. The top trait-module pairs are returned with the set number or p-value cutoff.
Requirements
- R
- R packages: WGCNA
Avalable options for expression
data = requests.get('https://icgrc.info/api/user/expression/dataset').json()
print('Expression datasets (expds) options')
#print(pd.DataFrame(data,columns=['expds','analysis_name']).to_string(index=False))
#display(pd.DataFrame(data,columns=['expds','analysis_name']))
display_table(data,columns=['expds','analysis_name'])
data = requests.get('https://icgrc.info/api/user/expression/transet').json()
print('Transcriptome set (transet) options')
display_table(data,columns=['transet'])
#import omics_api
#from omics_api import *
phends=['Zager2019','Booth2020']
expds='21trichcs10'
transet='cs10'
label_url=['21trichcs10_cs10_zager','21trichcs10_cs10_booth']
api_url = ['https://icgrc.info/api/user/expression,phenotype/list?transet=' + transet + '&expds=' + expds + '&phends=' + phends[0] + '&with_stdunits=1','https://icgrc.info/api/user/expression,phenotype/list?transet=' + transet + '&expds=' + expds + '&phends=' + phends[1] + '&with_stdunits=1']
icnt=0
top_dfwgcna=[]
if WGCNA :
for iurl in api_url:
print(label_url[icnt])
df_raw= read_url(iurl, label_url[icnt],requery=REQUERY_URL)
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
if False: #CHECK_BE
#display(c_converted_phenunits_values)
(df_corrected, map_corrected_bybatch)=check_batcheffects(c_converted_phenunits_values, label_url[icnt], TYPE_PHEN, whiten=True, batch_id='phenotype_dataset',on_missing='ppca',correct_BE=True) #properties=['phenotype_dataset']) #properties=['NCBI BioProject'])
c_converted_phenunits_values=df_corrected
moduletrait=[] #['darkred,cannabidiol', 'royalblue,alpha-pinene', 'royalblue,Delta9_tetrahydrocannabinol']
topmodules=do_wgcna_prepare(c_converted_phenunits_values,dflabel=label_url[icnt],cortopn=cortopnwgcna,maxp=maxpwgcna,mincor=mincorwgcna,recalc=True)
for itop in topmodules:
moduletrait.append(itop[0]+","+itop[1])
dfwgcn=do_wgcna_modulesgenes(c_converted_phenunits_values,dflabel=label_url[icnt],moduletrait=moduletrait,maxp=maxpwgcna,gstopn=gstopnwgcna,mings=mincorwgcna,annotate=True)
#do_wgcna_visualize(c_converted_phenunits_values,dflabel=label_url[icnt],recalc=True,moduletrait=moduletrait)
top_dfwgcna.append(dfwgcn)
#display(Image(filename=label_url[0] + '.ModuleTraitRelationship.png'))
#display(Image(filename=label_url[0] + '.ClusterDendogram.png'))
icnt+=1
21trichcs10_cs10_zager mydf
datatype | property | SAMN10330896 | SAMN10330897 | SAMN10330898 | SAMN10330899 | SAMN10330900 | SAMN10330901 | SAMN10330902 | SAMN10330903 | SAMN10330904 | SAMN10330905 | SAMN10330906 | SAMN10330907 | SAMN10330908 | SAMN10330909 | SAMN10330910 | SAMN10330911 | SAMN10330912 | SAMN10330913 | SAMN10330914 | SAMN10330915 | SAMN10330916 | SAMN10330917 | SAMN10330918 | SAMN10330919 | SAMN10330920 | SAMN10330921 | SAMN10330922 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
df_idprop
datatype | SAMN10330896 | SAMN10330897 | SAMN10330898 | SAMN10330899 | SAMN10330900 | SAMN10330901 | SAMN10330902 | SAMN10330903 | SAMN10330904 | SAMN10330905 | SAMN10330906 | SAMN10330907 | SAMN10330908 | SAMN10330909 | SAMN10330910 | SAMN10330911 | SAMN10330912 | SAMN10330913 | SAMN10330914 | SAMN10330915 | SAMN10330916 | SAMN10330917 | SAMN10330918 | SAMN10330919 | SAMN10330920 | SAMN10330921 | SAMN10330922 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
property | ||||||||||||||||||||||||||||
Loading... (need help?) |
df_annot
property | phenotype_dataset | NCBI BioProject |
---|---|---|
Loading... (need help?) |
mydf
datatype | property | SAMN10330896 | SAMN10330897 | SAMN10330898 | SAMN10330899 | SAMN10330900 | SAMN10330901 | SAMN10330902 | SAMN10330903 | SAMN10330904 | SAMN10330905 | SAMN10330906 | SAMN10330907 | SAMN10330908 | SAMN10330909 | SAMN10330910 | SAMN10330911 | SAMN10330912 | SAMN10330913 | SAMN10330914 | SAMN10330915 | SAMN10330916 | SAMN10330917 | SAMN10330918 | SAMN10330919 | SAMN10330920 | SAMN10330921 | SAMN10330922 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
df_idprop
datatype | SAMN10330896 | SAMN10330897 | SAMN10330898 | SAMN10330899 | SAMN10330900 | SAMN10330901 | SAMN10330902 | SAMN10330903 | SAMN10330904 | SAMN10330905 | SAMN10330906 | SAMN10330907 | SAMN10330908 | SAMN10330909 | SAMN10330910 | SAMN10330911 | SAMN10330912 | SAMN10330913 | SAMN10330914 | SAMN10330915 | SAMN10330916 | SAMN10330917 | SAMN10330918 | SAMN10330919 | SAMN10330920 | SAMN10330921 | SAMN10330922 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
property | ||||||||||||||||||||||||||||
Loading... (need help?) |
df_annot
property | NCBI BioProject | expression_dataset |
---|---|---|
Loading... (need help?) |
'Rscript Langfelder-01-dataInput.R 21trichcs10_cs10_zager 21trichcs10_cs10_zager.genes.csv 21trichcs10_cs10_zager 21trichcs10_cs10_zager.trait.csv > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor dev.new(): using pdf(file="Rplots1.pdf") Warning message: In numbers2colors(datTraits, signed = FALSE) : (some columns in) 'x' are constant. Their color will be the color of NA.
'Rscript Langfelder-02-networkConstr-auto.R 21trichcs10_cs10_zager > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor dev.new(): using pdf(file="Rplots1.pdf") dev.new(): using pdf(file="Rplots2.pdf")
'Rscript Langfelder-03a-relateModsToExt.R 21trichcs10_cs10_zager > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor dev.new(): using pdf(file="Rplots1.pdf") Warning message: In greenWhiteRed(50) : WGCNA::greenWhiteRed: this palette is not suitable for people with green-red color blindness (the most common kind of color blindness). Consider using the function blueWhiteRed instead.
'Rscript Langfelder-03b-relateModsToExt.R 21trichcs10_cs10_zager cs10-genes3.csv pink,cannabidiolic.acid midnightblue,nerolidol black,linalool brown,terpinolene turquoise,cannabidiol midnightblue,alpha.pinene brown,plus.terpinene black,cannabigerol midnightblue,beta.pinene royalblue,gamma.3.carene black,limonene black,camphor midnightblue,Total_monoterpenes pink,borneol midnightblue,Total_terpenoids midnightblue,beta.myrcene brown,beta.ocimene black,Total_cannabinoids turquoise,cannabinol midnightblue,Delta9.tetrahydrocannabinol > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory
top expressed gene-trait annotated 21trichcs10_cs10_zager.wgcna.top.annot.tsv
expgenes | trait | GS | p.GS | contig | fmin | fmax | strand | gb_keyword | go_term | interpro_value |
---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
21trichcs10_cs10_booth mydf
datatype | property | SAMN13750438 | SAMN13750439 | SAMN13750440 | SAMN13750441 | SAMN13750442 | SAMN13750443 | SAMN13750444 | SAMN13750445 | SAMN13750446 | SAMN13750447 | SAMN13750448 | SAMN13750449 | SAMN13750450 | SAMN13750451 | SAMN13750452 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
df_idprop
datatype | SAMN13750438 | SAMN13750439 | SAMN13750440 | SAMN13750441 | SAMN13750442 | SAMN13750443 | SAMN13750444 | SAMN13750445 | SAMN13750446 | SAMN13750447 | SAMN13750448 | SAMN13750449 | SAMN13750450 | SAMN13750451 | SAMN13750452 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
property | ||||||||||||||||
Loading... (need help?) |
df_annot
property | phenotype_dataset | NCBI BioProject |
---|---|---|
Loading... (need help?) |
mydf
datatype | property | SAMN13750438 | SAMN13750439 | SAMN13750440 | SAMN13750441 | SAMN13750442 | SAMN13750443 | SAMN13750444 | SAMN13750445 | SAMN13750446 | SAMN13750447 | SAMN13750448 | SAMN13750449 | SAMN13750450 | SAMN13750451 | SAMN13750452 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
df_idprop
datatype | SAMN13750438 | SAMN13750439 | SAMN13750440 | SAMN13750441 | SAMN13750442 | SAMN13750443 | SAMN13750444 | SAMN13750445 | SAMN13750446 | SAMN13750447 | SAMN13750448 | SAMN13750449 | SAMN13750450 | SAMN13750451 | SAMN13750452 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
property | ||||||||||||||||
Loading... (need help?) |
df_annot
property | NCBI BioProject | expression_dataset |
---|---|---|
Loading... (need help?) |
'Rscript Langfelder-01-dataInput.R 21trichcs10_cs10_booth 21trichcs10_cs10_booth.genes.csv 21trichcs10_cs10_booth 21trichcs10_cs10_booth.trait.csv > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor dev.new(): using pdf(file="Rplots1.pdf")
'Rscript Langfelder-02-networkConstr-auto.R 21trichcs10_cs10_booth > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor dev.new(): using pdf(file="Rplots1.pdf") dev.new(): using pdf(file="Rplots2.pdf")
'Rscript Langfelder-03a-relateModsToExt.R 21trichcs10_cs10_booth > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor dev.new(): using pdf(file="Rplots1.pdf") Warning message: In greenWhiteRed(50) : WGCNA::greenWhiteRed: this palette is not suitable for people with green-red color blindness (the most common kind of color blindness). Consider using the function blueWhiteRed instead.
'Rscript Langfelder-03b-relateModsToExt.R 21trichcs10_cs10_booth cs10-genes3.csv purple,monoterpene magenta,cannabidiolic.acid tan,Total_sesquiterpenes purple,alpha.guaiene greenyellow,alpha.bergamotene tan,terpinolene midnightblue,selinane purple,beta.farnesene lightgreen,alpha.pinene lightgreen,camphene lightgreen,beta.myrcene purple,gamma.elemene magenta,THCA_to_CBDA_ratio greenyellow,guaiane tan,Total_terpenoids darkturquoise,himachalane turquoise,linalool magenta,Total_cannabinoids midnightblue,alpha.humulene magenta,plus.epi.alpha.bisabolol midnightblue,cannabichromenic.acid lightgreen,cannabigerolic.acid magenta,Percent_Total_Cannabinoids_per_dry_weight lightgreen,Total_monoterpenes white,caryophyllene.oxide lightyellow,B.eudesmene > /dev/null'
Loading required package: dynamicTreeCut Loading required package: fastcluster Attaching package: ‘fastcluster’ The following object is masked from ‘package:stats’: hclust Attaching package: ‘WGCNA’ The following object is masked from ‘package:stats’: cor mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory mv: cannot stat ‘Rplots1.pdf’: No such file or directory
top expressed gene-trait annotated 21trichcs10_cs10_booth.wgcna.top.annot.tsv
expgenes | trait | GS | p.GS | contig | fmin | fmax | strand | gb_keyword | go_term | interpro_value |
---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
<Figure size 640x480 with 0 Axes>
eQTL analysis¶
This demo uses expression and variant data for eQTL analysis using Matrix eQTL R package (https://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/runit.html). The analysis can be between any SNP-gene pair, neighboring pairs (cis), or distant pairs (trans). The output are the top SNP-Gene pairs the set number or p-value cutoff.
Requirements
- R
- R packages: MatrixEQTL
Avalaible options for variants
data = requests.get('https://icgrc.info/api/user/variant/dataset').json()
print('Variant reference (ref) and dataset (snpds) options')
display_table(data,columns=['ref','snpds'])
Variant reference (ref) and dataset (snpds) options
ref | snpds |
---|---|
Loading... (need help?) |
Select options
ref="cs10"
snpds='21trichs'
expds='21trichcs10'
transet='cs10'
querygenes="GO:0006721,GO:0008299,GO:0030639,terpene,isopentenyl,cannabid,cannabic,cannabiv,cannabin"
api_url = ["https://icgrc.info/api/user/expression,variant/" + querygenes + "?ref=" + ref + "&snpds=" + snpds + "&transet=" + transet + "&expds=" + expds + "&tablelimit=100000000&limit=100000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000"]
label_url=["eqtlb_terpcango_" + snpds + "_" + expds]
#label_url=["eqtl_terpcan_" + snpds + "_allsnps_" + expds]
icnt=0
top_dfeqtl=[]
if MATRIXEQT:
#if True:
for iurl in api_url:
print(label_url[icnt])
df_raw= read_url(iurl, label_url[icnt],requery=REQUERY_URL)
(dfeqtlall,dfeqtlcis,dfeqtltrans)=do_matrixeqtl(df_raw,label_url[icnt],annot='cs10', recodeplink=False,recalc=True,maxp=maxpeqtl,expgeneloc_file='data/cs10xm_exp.genesloc.tsv')
top_dfeqtl.append(dfeqtlall)
#display(Image(filename=label_url[0] + ".eqtlpvalue.png"))
#display(Image(filename=label_url[0] + ".eqtlqqplot.png"))
icnt+=1
eqtlb_terpcango_21trichs_21trichcs10
'plink --bfile snp_eqtlb_terpcango_21trichs_21trichcs10 --recode A-transpose --out snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose --allow-extra-chr --noweb > /dev/null'
'cut -f1,4 snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw > snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw.postmp'
'head -n1 snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw | cut -f1,2,3,4,5,6 --complement > /dev/null'
plink samples with exp data 63/63
"cut -f1,2,3,4,5,6 --complement snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw | tail -n +2 | sed 's/NA//g' > snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw.allele"
'echo SAMN09747683\tSAMN09747684\tSAMN09747685\tSAMN09747686\tSAMN09747687\tSAMN09747688\tSAMN09747689\tSAMN09747690\tSAMN09747691\tSAMN10330896\tSAMN10330897\tSAMN10330898\tSAMN10330899\tSAMN10330900\tSAMN10330901\tSAMN10330902\tSAMN10330903\tSAMN10330904\tSAMN10330905\tSAMN10330906\tSAMN10330907\tSAMN10330908\tSAMN10330909\tSAMN10330910\tSAMN10330911\tSAMN10330912\tSAMN10330913\tSAMN10330914\tSAMN10330915\tSAMN10330916\tSAMN10330917\tSAMN10330918\tSAMN10330919\tSAMN10330920\tSAMN10330921\tSAMN10330922\tSAMN13503266\tSAMN13503268\tSAMN13503269\tSAMN13503270\tSAMN13503272\tSAMN13503274\tSAMN13503277\tSAMN13503278\tSAMN13503281\tSAMN13503282\tSAMN13503283\tSAMN13503285\tSAMN13750438\tSAMN13750439\tSAMN13750440\tSAMN13750441\tSAMN13750442\tSAMN13750443\tSAMN13750444\tSAMN13750445\tSAMN13750446\tSAMN13750447\tSAMN13750448\tSAMN13750449\tSAMN13750450\tSAMN13750451\tSAMN13750452 > snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw.newheader'
'cat snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw.newheader snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw.allele > eqtlb_terpcango_21trichs_21trichcs10_snp.tsvtmp'
'paste snp_eqtlb_terpcango_21trichs_21trichcs10_recodeAtranspose.traw.pos eqtlb_terpcango_21trichs_21trichcs10_snp.tsvtmp > eqtlb_terpcango_21trichs_21trichcs10_snp.tsv'
'ln -s data/cs10xm_exp.genesloc.tsv eqtlb_terpcango_21trichs_21trichcs10_exp.genesloc.tsv > /dev/null'
'Rscript matrix_eqtl.R eqtlb_terpcango_21trichs_21trichcs10 1e-05 > /dev/null'
rm: cannot remove ‘Rplots*.pdf’: No such file or directory Rows read: 1659 done. Rows read: 26 done. Processing covariates Task finished in 0.001 seconds Processing gene expression data (imputation, residualization) Task finished in 0.002 seconds Creating output file(s) Task finished in 0.013 seconds Performing eQTL analysis 100.00% done, 1,899 eQTLs Task finished in 0.058 seconds
rm: cannot remove ‘Rplots*.pdf’: No such file or directory
'Rscript matrix_eqtl_cistrans.R eqtlb_terpcango_21trichs_21trichcs10 1e-05 > /dev/null'
rm: cannot remove ‘Rplots*.pdf’: No such file or directory Rows read: 1659 done. Rows read: 26 done. Matching data files and location files 26 of 26 genes matched 1659 of 1659 SNPs matched Task finished in 0.012 seconds Reordering genes Task finished in 0.078 seconds Processing covariates Task finished in 0.002 seconds Processing gene expression data (imputation, residualization) Task finished in 0.001 seconds Creating output file(s) Task finished in 0.02 seconds Performing eQTL analysis 100.00% done, 72 cis-eQTLs, 1,827 trans-eQTLs Task finished in 0.057 seconds
top snp-expressed cis gene annotated
pvalue | snps | snpgenes | contig | start | end | note | goterm | iprterm | expgenes | note.1 | goterm.1 | iprterm.1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
top snp-expressed trans gene
snps | gene | statistic | pvalue | FDR | beta | pvalue_y | snpgenes | contig | start | end | note | goterm | iprterm | expgenes | note.1 | goterm.1 | iprterm.1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
top snp-expressed all gene annotated
snps | gene | statistic | pvalue | FDR | beta | pvalue_y | snpgenes | contig | start | end | note | goterm | iprterm | expgenes | note.1 | goterm.1 | iprterm.1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
Metabolite SNP Association (semi-mGWAS)¶
This demonstration uses traits/metabolite associaton with SNPs using plink --assoc feature. This generates the Manhattan Plot for each trait on the genomic location of genes that satify the functional annotation or accession constraints. The result is the list of top SNP-Trait pairs according to the set number or p-value cutoff.
Requirements
- R
- Python package: qqman
- plink
Available SNPs datasets options
data = requests.get('https://icgrc.info/api/user/variant/dataset').json()
print('SNPs datasets(snpds) options')
display_table(data)
SNPs datasets(snpds) options
ref | snpds |
---|---|
Loading... (need help?) |
if GWAS: # snp, phen
snpds=['21trichs','21trichs','7ds']
phends=['Zager2019','Booth2020','GloerfeltTarp2023']
querygenes="GO:0006721,GO:0008299,GO:0030639,terpene,isopentenyl,cannabid,cannabic,cannabiv,cannabin"
geneslabel='cannterpgo'
ref='cs10'
label_url=['21trichs_cs10_zager_cannterpgo','21trichs_cs10_booth_cannterpgo','7ds_cs10_tarp_cannterpgo']
api_url=[]
for i in range(len(label_url)):
api_url.append("https://icgrc.info/api/user/variant,phenotype/"+ querygenes + "?ref=" + ref + "&snpds=" + snpds[i] + "&tablelimit=10000000000&limit=2000000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000&phends=" + phends[i] + "&with_stdunits=1")
dfs=[]
phenall=set()
icnt=0
if GWAS:
for label in label_url:
print(label_url[icnt])
df_raw= read_url(api_url[icnt], label,requery=REQUERY_URL)
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
moduletrait=[] #['darkred,cannabidiol', 'royalblue,alpha-pinene', 'royalblue,Delta9_tetrahydrocannabinol']
dfs.append(c_converted_phenunits_values)
phenall.update(set(get_phenotypes(c_converted_phenunits_values)))
icnt+=1
21trichs_cs10_zager_cannterpgo 21trichs_cs10_booth_cannterpgo 7ds_cs10_tarp_cannterpgo
/home/lmansu10/jupyter/omics_api_utils.py:625: DtypeWarning: Columns (2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,165,166,167,168,170,173,174,181,183,185,186,191) have mixed types. Specify dtype option on import or set low_memory=False. c=pd.read_csv(myurl,sep='\t',index_col=index_col)
if GWAS:
select_options(phenall, waitInput=False)
Select phenotypes to process
Set the of list numbers for phenotypes to perform mGWAS
#selectionid=[3,4,6,7,8,9,10,11,15,16,17,19,21,28,29,30,31,32,33,34,45,46,47,53,55]
#selectionid=[3,4,6,7]
selectionid=list(range(1,len(phenall)+1))
GWAS_FROMPLINK=False
print(selectionid)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]
#setVariables(loglevel=getSetting('SHOW_DEBUG'),keep_unit=myunit)
top_dfgwas=[]
recalc=[False,False,False]
if GWAS:
selection=select_options(phenall, waitInput=False, selected=selectionid)
print('selections: ' + str(selection))
idf=0
df_gene=pd.read_csv('data/gene_cs10.tsv',sep="\t")
for df in dfs:
dfgwas=do_gwas(df, label_url[idf],myunit,phenotypes=selection,rerunplink=recalc[idf],maxp=maxpgwas,recalc=recalc[idf],annot='cs10') #,covar=['phenotype_dataset'],assocmethod='linear') #,df_genes=df_gene,annot='cs10')
top_dfgwas.append(dfgwas)
#printdisplay(MESSAGE_INFO,label_url[idf] + '.gwas.top.tsv') #Image(filename=label_url[idf] + '_gwasmp_' + myunit + '_' + label_url[idf] + '.qassoc.counts.png'))
idf+=1
'[57] terpinolene\t\t[58] tetrahydrocannabivarin\t\t[59] tetrahydrocannabivarinic acid'
"pre-selected ['1,8-cineole', 'B-eudesmene', 'Delta9-tetrahydrocannabinol', 'Delta9-tetrahydrocannabinolic acid', 'E-beta-ocimene', 'Percent_Total_Cannabinoids_per_dry_weight', 'THCA_to_CBDA_ratio', 'Total_cannabinoids', 'Total_monoterpenes', 'Total_sesquiterpenes', 'Total_terpenoids', 'alpha-bergamotene', 'alpha-farnesene', 'alpha-guaiene', 'alpha-humulene', 'alpha-pinene', 'beta-caryophyllene', 'beta-farnesene', 'beta-myrcene', 'beta-ocimene', 'beta-pinene', 'bisabolane', 'borneol', 'bulnesol', 'cadinane', 'camphene', 'camphor', 'cannabichromene', 'cannabichromenic acid', 'cannabidiol', 'cannabidiolic acid', 'cannabidivarin', 'cannabidivarinic acid', 'cannabigerol', 'cannabigerolic acid', 'cannabinol', 'caryophyllene oxide', 'cedrol', 'eremophilane', 'eudesma-3-7-11-diene', 'gamma-3-carene', 'gamma-elemene', 'green-leaf-volatile', 'guaiane', 'guaiol', 'himachalane', 'limonene', 'linalool', 'monoterpene', 'monoterpene alcohol', 'nerolidol', 'plus-epi-alpha-bisabolol', 'plus-terpinene', 'selinane', 'sesquiterpene', 'sesquiterpene alcohol', 'terpinolene', 'tetrahydrocannabivarin', 'tetrahydrocannabivarinic acid']"
selections: ['1,8-cineole', 'B-eudesmene', 'Delta9-tetrahydrocannabinol', 'Delta9-tetrahydrocannabinolic acid', 'E-beta-ocimene', 'Percent_Total_Cannabinoids_per_dry_weight', 'THCA_to_CBDA_ratio', 'Total_cannabinoids', 'Total_monoterpenes', 'Total_sesquiterpenes', 'Total_terpenoids', 'alpha-bergamotene', 'alpha-farnesene', 'alpha-guaiene', 'alpha-humulene', 'alpha-pinene', 'beta-caryophyllene', 'beta-farnesene', 'beta-myrcene', 'beta-ocimene', 'beta-pinene', 'bisabolane', 'borneol', 'bulnesol', 'cadinane', 'camphene', 'camphor', 'cannabichromene', 'cannabichromenic acid', 'cannabidiol', 'cannabidiolic acid', 'cannabidivarin', 'cannabidivarinic acid', 'cannabigerol', 'cannabigerolic acid', 'cannabinol', 'caryophyllene oxide', 'cedrol', 'eremophilane', 'eudesma-3-7-11-diene', 'gamma-3-carene', 'gamma-elemene', 'green-leaf-volatile', 'guaiane', 'guaiol', 'himachalane', 'limonene', 'linalool', 'monoterpene', 'monoterpene alcohol', 'nerolidol', 'plus-epi-alpha-bisabolol', 'plus-terpinene', 'selinane', 'sesquiterpene', 'sesquiterpene alcohol', 'terpinolene', 'tetrahydrocannabivarin', 'tetrahydrocannabivarinic acid']
top snp-trait 21trichs_cs10_zager_cannterpgo.gwas.top.snpgene.tsv
trait | snps | pvalue | snpgenes | note | goterm | iprterm |
---|---|---|---|---|---|---|
Loading... (need help?) |
rm: cannot remove ‘*.qassoc.done’: No such file or directory
top snp-trait 21trichs_cs10_booth_cannterpgo.gwas.top.snpgene.tsv
trait | snps | pvalue | snpgenes | note | goterm | iprterm |
---|---|---|---|---|---|---|
Loading... (need help?) |
rm: cannot remove ‘*.qassoc.done’: No such file or directory
top snp-trait 7ds_cs10_tarp_cannterpgo.gwas.top.tsv
trait | CHR | snps | BP | NMISS | BETA | SE | R2 | T | pvalue |
---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
Merge multi tools¶
Merge the result from the tools above to find multiple evedince of association. The steps include
- eQTL gives top snp-expression pairs, and snp gene-expressed gene pairs
- WGCNA gives top expressed gene - trait pairs
- mGWAS gives top snp-trait, and snp gene-trait pairs
The merging connects the expression genes common from the eQTL and WGCNA results, giving new snp gene-trait pairs
- The new snp gene-trait pairs are then intersected with the mGWAS result.
The intersecting pairs have two evidence paths of gene-gtrait association. The result below gives 144 gene-trait pairs, with 23 genes
top_dfgwas=top_dfgwas[:2]
#%autoreload 2
#import omics_api
#from omics_api import *
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
mergeoutfle='merged_21trichcs10_alltraits_1dsb.tsv'
def printdflists(l):
for df in l:
print(df.columns.values.tolist())
#setVariables(loglevel=getSetting('SHOW_DEBUG'))
printdflists(top_dfeqtl)
printdflists(top_dfwgcna)
printdflists(top_dfgwas)
MERGE=True
if MERGE:
df_genes=pd.read_csv('data/gene_cs10.tsv',sep="\t")
merge_matrixeqtl_wgcna_gwas(eqtls=top_dfeqtl, wgcnas=top_dfwgcna,gwass=top_dfgwas,outfile=mergeoutfle,use_snpgene=True,df_genes=df_genes,recalc=True)
"set variables: \nkeep_unit=percent_of_dw\nr_path=Rscript\nplink_path=plink\nLOG_LEVEL=1\nunit_converter={('percent_of_dw', 'ug_per_gdw'): 10000.0, ('ug_per_gdw', 'percent_of_dw'): 0.0001}"
['snps', 'gene', 'statistic', 'pvalue', 'FDR', 'beta', 'pvalue_y', 'snpgenes', 'contig', 'start', 'end', 'note', 'goterm', 'iprterm', 'expgenes', 'note.1', 'goterm.1', 'iprterm.1'] ['expgenes', 'trait', 'GS', 'p.GS'] ['expgenes', 'trait', 'GS', 'p.GS'] ['trait', 'snps', 'pvalue', 'snpgenes', 'note', 'goterm', 'iprterm'] ['trait', 'snps', 'pvalue', 'snpgenes', 'note', 'goterm', 'iprterm']
rm: cannot remove ‘*merged_21trichcs10_alltraits_1dsb.tsv’: No such file or directory
'generated eqtl_wgcna_onexpgene_merged_21trichcs10_alltraits_1dsb.tsv'
eqtl_wgcna_onexpgene_merged_21trichcs10_alltraits_1dsb.tsv
snps | snpgenes | expgenes | gene | pvalue | trait | GS | p.GS |
---|---|---|---|---|---|---|---|
Loading... (need help?) |
/home/lmansu10/jupyter/omics_api_utils.py:3308: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance. df_eqtl_wgcna_onexpgenes_gwas_onsnpgenetrait=pd.merge(df_eqtl_wgcna_onexpgenes,df_gwass, on=['trait','snpgenes']) #.drop_duplicates()
"df_eqtl_wgcna_onexpgenes_gwas_onsnpgenetrait (111, 9)\n[('trait', ''), ('snpgenes', ''), ('pvalue_eqtl', 'count'), ('pvalue_eqtl', 'min'), ('GS_wgcna', 'max'), ('pGS_wgcna', 'count'), ('pGS_wgcna', 'min'), ('pvalue_gwas', 'count'), ('pvalue_gwas', 'min')]"
'using unfiltered merged_21trichcs10_alltraits_1dsb.tsv'
'generated merged_21trichcs10_alltraits_1dsb.tsv'
triple_snpgenetrait_merged_21trichcs10_alltraits_1dsb.tsv
trait | snpgenes | pvalue_eqtl_count | pvalue_eqtl_min | GS_wgcna_max | pGS_wgcna_count | pGS_wgcna_min | pvalue_gwas_count | pvalue_gwas_min | gene | contig | fmin | fmax | strand | locus | gb_keyword | go_term | interpro_value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Loading... (need help?) |
tgzdownloads('alltgz1dsb', txt=True, img=True)
'tar -cvzf alltgz1dsb.tgz -T dwlist.txt > /dev/null'
'generated alltgz1dsb.tgz'
Running semi-offline using large dataset¶
Performing genome-wide or transcriptome-wide analyses requires large datasets. It is not practical to use retail web-service API query but the datasets may be downloaded in bulk, stored, and accessed locally. The API has feature to use local file instead of constantly querying the web-server. Most of these files are still downloadable using the web-service but requested in bulk by datasets. These datasets include:
- gene files by reference and annotation from api/user/gene/list
- expression matrix by dataset from api/user/expression/list
- variant SNPs data in binary Plink format by dataset avaialable at
This section demonstrates bulk downloading the necessary datasets, and repeating the analyses described above using whole-genome SNPs and whole-transcriptome expression data. Since these runs take time, run this as a python script from the command line outside of jupyter.
if False:
import datetime
#download gene annotation and save to data directory
datadir='data1'
GENEFILE=datadir+'/gene_cs10.tsv'
#pd.read_csv('https://icgrc.info/api/user/gene/list?annot=cs10',sep="\t").to_csv(GENEFILE,sep="\t",index=False)
#download expression matrix save to data directory
EXPFILE=datadir + '/21trichcs10_allexp.tsv'
#pd.read_csv('https://icgrc.info/api/user/expression/list?expds=21trichcs10',sep="\t").to_csv(EXPFILE,sep="\t",index=False)
#EXPFILE=datadir + '/GaoGuerrieroConneely_allexp.tsv'
#EXPFILE=datadir + '/Gao_allexp.tsv'
#pd.read_csv('https://icgrc.info/api/user/expression/list?transet=all&expds=Massimino2017&tablelimit=100000&limit=1000',sep="\t").to_csv(EXPFILE,sep="\t",index=False)
#download variant file in binary plink format at
PLINKFILE='data/cs10-21trichomes-all-gatkgenotype-allsnps-samn-plink-nofam'
#PLINKFILE=None
PHENFILE=datadir+'/phen_all.tsv'
#pd.read_csv('https://icgrc.info/api/user/phenotype/list',sep="\t").to_csv(PHENFILE,sep="\t",index=False)
setVariables(loglevel=getSetting('SHOW_ERRORONLY'),keep_unit=myunit)
# hold top results
top_dfwgcna=[]
top_dfeqtl=[]
top_dfgwas=[]
# enable module
WGCNA=True
EQTL=True
GWAS=True
MERGE=True
REQUERY_URL=False
phends='Zager2019,Booth2020'
expds='21trichcs10'
transet='cs10'
label_url=None
label_wgcna=['wgcna_21trichcs10allexp_cs10_zagerbooth_b']
url_wgcna = ['https://icgrc.info/api/user/expression,phenotype/list?transet=' + transet + '&expds=' + expds + '&phends=' + phends + '&with_stdunits=0&tablelimit=100000&limit=100000']
icnt=0
if WGCNA :
print('STARTED WGCNA ' + str(datetime.datetime.now()))
for iurl in url_wgcna:
ilabel=label_wgcna[icnt]
df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
moduletrait=[]
topmodules=do_wgcna_prepare(c_converted_phenunits_values,dflabel=ilabel,cortopn=cortopnwgcna,maxp=maxpwgcna,mincor=mincorwgcna,recalc=False,exp_file=EXPFILE)
for itop in topmodules:
moduletrait.append(itop[0]+","+itop[1])
dfwgcn=do_wgcna_modulesgenes(c_converted_phenunits_values,dflabel=ilabel,moduletrait=moduletrait,maxp=maxpwgcna,gstopn=gstopnwgcna,mings=mincorwgcna)
top_dfwgcna.append(dfwgcn)
icnt+=1
snpds='21trichs'
phends='Zager2019,Booth2020'
querygenes="GO:0006721,GO:0008299,GO:0030639,terpene,isopentenyl,cannabid,cannabic,cannabiv,cannabin"
geneslabel='cannterp'
ref='cs10'
label_gwas=['gwas_21trich_allsnps_cs10_zagerbooth_cannterp_b']
url_gwas= ["https://icgrc.info/api/user/variant,phenotype/"+ querygenes + "?ref=" + ref + "&snpds=" + snpds + "&tablelimit=10000000000&limit=2000000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000&phends=" + phends + "&with_stdunits=1"]
phenall=set()
icnt=0
df_gwas=[]
# collect available phenotypes first to make selection
if GWAS:
print('STARTED GWAS ' + str(datetime.datetime.now()))
for iurl in url_gwas:
ilabel=label_gwas[icnt]
df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
(c_converted_phenunits, c_converted_phenunits_values)=convert_units_to(df_raw,to_unit=myunit)
df_gwas.append(c_converted_phenunits_values)
phenall.update(set(get_phenotypes(c_converted_phenunits_values)))
# show selection options, set to waitInput=True to get interactive response. For now selection selectionid is preselected
select_options(phenall, waitInput=False)
selectionid=[3,4,6,7,8,9,10,11,15,16,17,19,21,28,29,30,31,32,33,34,45,46,47,53,55] # most common cannabinoids/terpenes
#selectionid=[3,4,6,7], CBDA/THCA
if GWAS:
selection=select_options(phenall, waitInput=False, selected=selectionid)
# verify selections as as intended
print('selections: ' + str(selection))
idf=0
for df in df_gwas:
dfgwas=do_gwas(df, label_gwas[idf],myunit,phenotypes=selection,rerunplink=False,maxp=maxpgwas,plink_file=PLINKFILE) #,assocmethod='linear')
top_dfgwas.append(dfgwas)
idf+=1
ref="cs10"
snpds='21trichs'
expds='21trichcs10'
transet='cs10'
querygenes='cannabid,cannabic,cannabiv,cannabin,terpene'
url_eqtl = ["https://icgrc.info/api/user/expression,variant/" + querygenes + "?ref=" + ref + "&snpds=" + snpds + "&transet=" + transet + "&expds=" + expds + "&tablelimit=100000000&limit=100000&fmissing_lt=0.7&maf_gt=0.2&upstream=1000"]
label_eqtl=["eqtl_terpcan_" + snpds + "_allsnpsexps_" + expds+'_relax_b']
# GENELOCFILE is derived from GENEFILE using only gene_id\tcontig\tfmin\tfmax
GENELOCFILE=datadir+'/cs10xm_exp.genesloc.tsv'
pd.read_csv(GENEFILE,sep="\t")[['name','contig','fmin','fmax']].rename(columns={'name':'geneid','contig':'chr','fmin':'s1','fmax':'s2'}).to_csv(GENELOCFILE,sep="\t",index=False)
icnt=0
if MATRIXEQT:
print('STARTED EQTL ' + str(datetime.datetime.now()))
for iurl in url_eqtl:
ilabel=label_eqtl[icnt]
df_raw= read_url(iurl, ilabel,requery=REQUERY_URL)
(dfeqtlall,dfeqtlcis,dfeqtltrans)=do_matrixeqtl(df_raw,ilabel,annot=None, recodeplink=False,maxp=maxpeqtl,plink_file=PLINKFILE,expgeneloc_file=GENELOCFILE,exp_file=EXPFILE)
top_dfeqtl.append(dfeqtlall)
icnt+=1
'''
top_dfeqtl=[]
top_dfgwas=[]
top_dfwgna=[]
top_dfeqtl.append('eqtl_terpcan_21trichs_allsnpsexps_21trichcs10_relax.eqtl.all.top.tsv')
top_dfwgcna.append('wgcna_21trichcs10allexp_cs10_zagerbooth_relax.wgcna.top.tsv')
top_dfgwas.append('gwas_21trich_allsnps_cs10_zagerbooth_cannterp_relax.gwas.top.tsv')
'''
merge_output='merged_21trichcs10allsnpsallexps_trait_relax_b.tsv'
if MERGE:
print('STARTED MERGE ' + str(datetime.datetime.now()))
df_gene=pd.read_csv(GENEFILE,sep="\t") #name contig fmin fmax strand gb_keyword go_term interpro_value)
merge_matrixeqtl_wgcna_gwas(eqtls=top_dfeqtl, wgcnas=top_dfwgcna,gwass=top_dfgwas,outfile=merge_output,use_snpgene=True,df_genes=df_gene)